1
|
Li Y, Lei C, Wu X, Wang Y, Xie H, Ou Q, Zhang S. Environmentally-Friendly Europium-Based Yellow Perovskite Nanocrystals with Near-Unit Efficiency for White LED. J Phys Chem Lett 2024; 15:11876-11882. [PMID: 39567838 DOI: 10.1021/acs.jpclett.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Recently, Mn2+-doped metal halide perovskites (MHPs) have been extensively studied as they can improve the photoluminescence quantum yield (PLQY) with minimal self-absorption. However, almost all of them with high efficiency are Pb/Cd-based toxic heavy metal perovskites, which seriously limits their commercial applications. To address the dual needs of high efficiency and environmental protection, this study proposes to incorporate Mn2+ into the environmentally friendly perovskite CsEuX3 (X = Cl/Br), and further increases PLQY to 96.9% through the codoping of Tb3+, which, to the best of our knowledge, is the highest reported value of all inorganic environmentally friendly perovskites in the visible light region. It is found that the codoping of Tb3+ can reduce the host defect density and enhance the crystal field strength around Mn2+, acting as an energy transfer bridge. Additionally, Mn2+/Tb3+-codoped CsEuX3-based white light-emitting diodes (WLEDs) with a high color rendering index (Ra = 91.2) demonstrate potential for lighting applications.
Collapse
Affiliation(s)
- Yaohua Li
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Chuangchang Lei
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Xiang Wu
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Yikun Wang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, P. R. China
| | - Qiongrong Ou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Dupé S, Liu D, Ghosh A, Vasenko AS, Pouget S, Schlutig S, Vidal M, Lebeau B, Ling WL, Reiss P, Prezhdo OV, Ryzhikov A, Aldakov D. Quantum-confined bismuth iodide perovskite nanocrystals in mesoporous matrices. NANOSCALE 2024; 16:11223-11231. [PMID: 38775652 DOI: 10.1039/d4nr00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bismuth iodide perovskite nanocrystals are considered a viable alternative to the Pb halide ones due to their reduced toxicity and increased stability. However, it is still challenging to fabricate nanocrystals with a small and controlled size, and their electronic properties are not well understood. Here, we propose the growth of Bi iodide perovskite nanocrystals using different mesoporous silica with ordered pores of controlled diameter as templates. We obtain a series of confined Cs3Bi2I9 and MA3Bi2I9 perovskites with diameters of 2.3, 3.7, 7.4, and 9.2 nm, and precise size control. The complex absorption spectra of the encapsulated perovskites cannot be properly fitted using classical Tauc or Elliott formalisms. By fitting the spectra with a modified Elliott formula, the bandgap values and exciton binding energies (70-400 meV) could be extracted. The calculated bandgaps scale with the pore sizes. Using a combined experimental and theoretical approach, we demonstrate for the first time quantum confinement in 0D Bi-iodide perovskite nanocrystals.
Collapse
Affiliation(s)
- Sarah Dupé
- Univ. Grenoble Alpes, CNRS, CEA, INP, IRIG/SyMMES, STEP, 38000 Grenoble, France.
| | - Dongyu Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Antik Ghosh
- Univ. Grenoble Alpes, CNRS, CEA, INP, IRIG/SyMMES, STEP, 38000 Grenoble, France.
| | - Andrey S Vasenko
- Donostia International Physics Center (DIPC), 20018 San Sebastián-Donostia, Euskadi, Spain.
| | - Stéphanie Pouget
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, SGX, Grenoble, France.
| | - Sandrine Schlutig
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, SGX, Grenoble, France.
| | - Mathieu Vidal
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, Axe Matériaux à Porosité Contrôlée, F-68100, Mulhouse, France.
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Bénédicte Lebeau
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, Axe Matériaux à Porosité Contrôlée, F-68100, Mulhouse, France.
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France.
| | - Peter Reiss
- Univ. Grenoble Alpes, CNRS, CEA, INP, IRIG/SyMMES, STEP, 38000 Grenoble, France.
| | - Oleg V Prezhdo
- Department of Chemistry and Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA.
| | - Andrey Ryzhikov
- Université de Haute-Alsace, CNRS, Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, Axe Matériaux à Porosité Contrôlée, F-68100, Mulhouse, France.
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Dmitry Aldakov
- Univ. Grenoble Alpes, CNRS, CEA, INP, IRIG/SyMMES, STEP, 38000 Grenoble, France.
| |
Collapse
|
3
|
Sheng Y, Chen P, Gao Y, He Y, Li J, Muhammad, Xie X, Cheng C, Yang J, Chang Y, Tong G, Jiang Y. Tuneable Efficient White Emission of Sb 3+/Mn 2+ Co-Doped Lead-Free Perovskites for Single-Component White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19175-19183. [PMID: 38573052 DOI: 10.1021/acsami.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.
Collapse
Affiliation(s)
- Yuanyuan Sheng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ping Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanpeng Gao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong He
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Junchun Li
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Muhammad
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Xie
- Jianghuai Advance Technology Center, Hefei 230000, People's Republic of China
| | - Chen Cheng
- School of Microelectronics, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jingting Yang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajing Chang
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, People's Republic of China
| | - Guoqing Tong
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Jiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Khan MI, Hussain S, Almutairi BS, Dahshan A, Mujtaba A, Ahmad SM. The structural, optical and photovoltaic properties of Zn-doped MAPbI 2Br perovskite solar cells. Phys Chem Chem Phys 2024; 26:12210-12218. [PMID: 38592224 DOI: 10.1039/d3cp06299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The spin coating method was used to deposit MAPbI2Br films on FTO-glass substrates. Zn2+ (zinc) doping was used for these films at intensity rates of 2% and 4%, respectively. XRD analysis proved that MAPbI2Br films had a cubic structure and a crystalline character. 2% Zn doping into the MAPbI2Br film had a modest large grain size (38.09 nm), Eg (1.95 eV), high refractive index (2.66), and low extinction coefficient (1.67), according to XRD and UV-vis analyses. To facilitate and enhance carrier transit, at contacts as well as throughout the bulk material, the perovskite's trap-state densities decreased. The predicted MAPbI2Br valence and conduction band edges are -5.44 and -3.52, respectively. The conduction band (CB) edge of the film that was exposed to Zn atoms has been pressed towards the lower value, assembly it a better material for solar cells. EIS is particularly useful for understanding charge carrier transport, recombination mechanisms, and the influence of different interfaces within the device structure. Jsc is 11.09 mA cm-2, Voc is 1.09, PCE is 9.372% and FF is 0.777. The cell made with the 2% Zn doped into the MAPbI2Br film demonstrated a superior device.
Collapse
Affiliation(s)
- M I Khan
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Saddam Hussain
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis C.P. 81223, Mexico.
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - A Dahshan
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Mujtaba
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | | |
Collapse
|
5
|
Annurakshita S, Liu M, Vivo P, Bautista G. Probing compositional engineering effects on lead-free perovskite-inspired nanocrystal thin films using correlative nonlinear optical microscopy. NANOSCALE 2024; 16:2852-2859. [PMID: 38231157 DOI: 10.1039/d3nr05137d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We introduce the use of correlative third-harmonic generation and multiphoton-induced luminescence microscopy to investigate the impact of manganese (Mn) doping on bismuth (Bi)-based perovskite-inspired nanocrystal thin films. The technique was found to be extremely sensitive to the microscopic features of the perovskite film and its structural compositions, allowing the unambiguous detection of compositionally different emitters in the perovskite film and manipulation of their nonlinear optical responses. Our work unveils a new way to investigate, manipulate, and exploit perovskite-inspired functional materials for nonlinear optical conversion at the nanoscale.
Collapse
Affiliation(s)
- Shambhavee Annurakshita
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| | - Maning Liu
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
- Centre for Analysis and Synthesis, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Godofredo Bautista
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland.
| |
Collapse
|
6
|
Jiang S, Liu M, Zhao D, Guo Y, Fu J, Lei Y, Zhang Y, Zheng Z. Doping strategies for inorganic lead-free halide perovskite solar cells: progress and challenges. Phys Chem Chem Phys 2024; 26:4794-4811. [PMID: 38259226 DOI: 10.1039/d3cp05444f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In recent years, remarkable advancements have been achieved in the field of halide perovskite solar cells (PSCs). However, the commercialization of PSCs has been impeded by challenges such as Pb leakage and the instability of hybrid organic-inorganic perovskites (HOIPs). Hence, the future lies in the development of environmentally friendly inorganic lead-free halide perovskites (LFHPs) based on elements like Sn, Ge, Bi, Sb, and Cu, which show great promise for photovoltaic applications. However, LFHP photovoltaic cells still face challenges such as low efficiency, poor film quality, and stability in comparison to HOIPs. These limitations significantly hinder their further development. To address these issues, element doping strategies, including cationic and anionic doping, as well as the use of additives, are frequently employed. These strategies aim to improve film quality, passivate defects, reduce the band gap, and enhance device performance and stability. In this paper, we aim to provide a comprehensive review of the recent research progress in doping strategies for LFHPs.
Collapse
Affiliation(s)
- Siyu Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Manying Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Dandan Zhao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Yanru Guo
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Junjie Fu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Yan Lei
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Yange Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, China.
| |
Collapse
|
7
|
Kim DY, Jung JG, Lee YJ, Park MH. Lead-Free Halide Perovskite Nanocrystals for Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6317. [PMID: 37763594 PMCID: PMC10532894 DOI: 10.3390/ma16186317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jae-Geun Jung
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Ye-Ji Lee
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
| | - Min-Ho Park
- Department of Materials Science and Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (D.-Y.K.); (J.-G.J.); (Y.-J.L.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
- Integrative Institute of Basic Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
8
|
Luo Y, Chen S, Zhang J, Ding X, Pan B, Wang L, Lu J, Cao M, Li Y. Perovskite-Derived Bismuth with I - and Cs + Dual Modification for High-Efficiency CO 2 -to-Formate Electrosynthesis and Al-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303297. [PMID: 37272677 DOI: 10.1002/adma.202303297] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Bi-based materials are one of the most promising candidates for electrochemical CO2 reduction reaction (CO2 RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO2 RR performance of Bi for formate electrosynthesis. Cs3 Bi2 I9 nanocrystals are prepared by a hot-injection method. The as-prepared products feature well-defined hexagonal shape and uniform size distribution. When used as the precatalyst, Cs3 Bi2 I9 nanocrystals are converted to Cs+ and I- comodified Bi. The resultant catalyst exhibits high formate Faradaic efficiency close to 100%, and remarkable partial current density up to 44 mA cm-2 in an H-cell and up to 276 mA cm-2 in a flow cell. Moreover, Cs3 Bi2 I9 is used as the cathode catalyst and paired with an Al anode in an Al-CO2 battery for simultaneous CO2 valorization and power generation.
Collapse
Affiliation(s)
- Yuqing Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shuhua Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xue Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
9
|
Wu Z, Tüysüz H, Besenbacher F, Dai Y, Xiong Y. Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light. NANOSCALE 2023; 15:5598-5622. [PMID: 36891830 DOI: 10.1039/d3nr00124e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite materials, especially lead-based perovskites, have been widely used for optoelectronic and catalytic applications. However, the high toxicity of the lead element is a major concern that directs the research work toward lead-free halide perovskites, which could utilize bismuth as a promising candidate. Until now, the replacement of lead by bismuth in perovskites has been well studied by designing bismuth-based halide perovskite (BHP) nanomaterials with versatile physical-chemical properties, which are emerging in various application fields, especially heterogeneous photocatalysis. In this mini-review, we present a brief overview of recent progress in BHP nanomaterials for photocatalysis under visible light. The synthesis and physical-chemical properties of BHP nanomaterials have been comprehensively summarized, including zero-dimensional, two-dimensional nanostructures and hetero-architectures. Later, we introduce the photocatalytic applications of these novel BHP nanomaterials with visible-light response, improved charge separation/transport and unique catalytic sites. Due to advanced nano-morphologies, a well-designed electronic structure and an engineered surface chemical micro-environment, BHP nanomaterials demonstrate enhanced photocatalytic performance for hydrogen generation, CO2 reduction, organic synthesis and pollutant removal. Finally, the challenges and future research directions of BHP nanomaterials for photocatalysis are discussed.
Collapse
Affiliation(s)
- Zehong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yitao Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Mei H, Zhai Y, Zhu QQ, Wu N, Zhang H, Liang P, Wang L. Phase stability and electronic structure of CsPbCl 3 under hydrostatic stress and anion substitution. Phys Chem Chem Phys 2023; 25:1279-1289. [PMID: 36533449 DOI: 10.1039/d2cp04897c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Perovskites based on CsPbX3 (X = Cl, Br, I) have promising applications in solar cells, light-emitting diodes, and photodetectors. In this paper, the phase stability of inorganic metal halide perovskite CsPbCl3 under hydrostatic pressure and anion substitution is studied using density functional theory (DFT), and this modification is explained by the interaction of the octahedrons and transformation of the bond-orbital coupling. In addition, two space groups, P4/mbm and Amm2, which are stable under stress, are subjected to anion substitution; then, the structural stability and band gap change of CsPbCl3-yXy (X = Br, I; y = 0, 1, 2, 3) are analyzed after applying stress; finally, the electronic structures and optical properties of the six most stable components are presented. The effect of stress and anions on the components' optoelectronic properties is closely linked with the crystal's structural alteration mechanism. These results show that stress and anion modulation can significantly change the optoelectronic properties of materials, which make these materials have broad application prospects. Furthermore, stress can be used as an effective tool for screening the most stable material structure.
Collapse
Affiliation(s)
- Hang Mei
- China Jiliang University, Hangzhou, Zhejiang, China.
| | - Yue Zhai
- Jilin University College of Electronic Science and Engineering, Changchun, Jilin, China
| | | | - Na Wu
- China Jiliang University, Hangzhou, Zhejiang, China.
| | - Hong Zhang
- China Jiliang University, Hangzhou, Zhejiang, China.
| | - Pei Liang
- China Jiliang University, Hangzhou, Zhejiang, China.
| | - Le Wang
- China Jiliang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Abstract
AbstractRecent progress in doping of halide perovskite materials (HPM) by using targeted elements has provided a dimension beyond structural and compositional modification, for achieving desired properties and resulting device performance. Herein doping of alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) in three-dimensional HPM is reviewed to lay a particular focus on advances in synthesis, doping-induced changes in optical and electrical properties, and their optoelectronic applications. The introduction of alkali metals in HPM shows an effective route for improved morphology, suppressed ion migration, reduction in non-radiative recombination, passivation of bulk and interface defects, and increased thermal stability. In the end, we provide our perspective that the effect of alkali metal incorporation on the efficiency and stability of HPM should be further investigated via in-situ characterization methods and doped HPM should be considered for more functional applications.
Graphical abstract
Collapse
|
12
|
Meng Q, Zhou L, Pang Q, He X, Wei T, Zhang JZ. Enhanced Photoluminescence of All-Inorganic Manganese Halide Perovskite-Analogue Nanocrystals by Lead Ion Incorporation. J Phys Chem Lett 2021; 12:10204-10211. [PMID: 34644083 DOI: 10.1021/acs.jpclett.1c02997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we develop an effective approach for incorporating lead (Pb) ions into manganese (Mn) halide perovskite-analogue nanocrystals (PA NCs) of CsMn(Cl/Br)3·2H2O via room-temperature supersaturation recrystallization. Pb2+-incorporated Mn-PA NCs exhibit strong orange emission upon UV light illumination, a peak centered at 600 nm assigned to Mn2+ transition (4T1g → 6A1g) with a photoluminescence quantum yield (PLQY) of 41.8% compared to the pristine Mn-PA NCs with very weak PL (PLQY = 0.10%). The significant enhancement of PLQY is attributed to the formation of [Mn(Cl/Br)4(OH)2]4--[Pb(Cl/Br)4(OH)2]4--[Mn(Cl/Br)4(OH)2]4- chain network structure, in which Pb2+ effectively dilutes the Mn2+ concentration to reduce magnetic coupling between Mn2+ pairs to relax the spin and parity selection rules. In addition, excited energy can effectively transfer from the [Pb(Cl/Br)4(OH)2]4- unit to Mn2+ luminescence centers owing to the low activation energy. Pb2+-incorporated PA NCs also exhibit excellent stability. The combined strong PL and high stability make Pb2+-incorporated Mn-based PA NCs an excellent candidate for potential optronic applications.
Collapse
Affiliation(s)
- Qian Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xingli He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Tingying Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|