1
|
Ming Yu Z, Hui Jia J, Yong Wang G, Wen Z, Cheng Yang C, Jiang Q. Confining CoSe/MoSe 2 Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage. CHEMSUSCHEM 2025; 18:e202402434. [PMID: 39779475 DOI: 10.1002/cssc.202402434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed. The abundant CoSe/MoSe2 heterointerfaces equipped with built-in electric fields and unique interconnected carbon polyhedrons (convenient electron/ion transfer pathway and robust mechanical buffer) promote the reaction kinetics and bolster the structural robustness. Accordingly, the CoMoSe@NCP/NCFs composite exhibits outstanding cycle life, with a capacity of 206 mAh g-1 preserved after 2500 cycles at 2 A g-1. Besides, CoMoSe@NCP/NCFs also achieves decent rate performance with 161 mAh g-1 at 10 A g-1. This research demonstrates a viable approach for constructing superior PIB anodes with both fast kinetics and high stability.
Collapse
Affiliation(s)
- Zhi Ming Yu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Jian Hui Jia
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Guo Yong Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
2
|
Li X, Liu F, Li J, Xu A, Shi J, Li B, Wu S, Wang L. WS 2@NC Square Hexahedral Nanosheets with Na +-DME-Solvent Cointercalation Mechanism for Fast and Durable Sodium Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39993322 DOI: 10.1021/acsami.4c20743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Sodium-ion batteries (SIBs) face challenges in practical applications due to substantial volume expansion of anode materials and unstable solid-electrolyte interphases (SEIs), limiting their cycling life, rate performance, and reaction kinetics. Here, we report the successful synthesis of unique N-doped carbon-coated WS2 hexahedral nanoporous core-shell structures (WS2@NC) combined with a Na+-solvation strategy for high capacity and long-life sodium storage. Nanoporous architecture facilitates sufficient electrolyte infiltration and buffers volume expansion. The uniform N-doped carbon shell improves the conductivity, the stable inorganic-rich SEI improves the cycle stability, and the Na+-solvent cointercalation partially avoids the desolvation process and realizes the rapid reaction kinetics. Unique structural design and excellent compatibility with electrolytes give the WS2@NC electrode unprecedented long cycling life and rate capability in SIBs (207.7 mAh g-1 after 10,000 cycles at 20 A g-1 and 343 mAh g-1 at 50 A g-1). This work provides critical insights into performance enhancement mechanisms, offering a crucial theoretical basis for SIB applications.
Collapse
Affiliation(s)
- Xue Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fangting Liu
- School of Chemistry and Chemical Engineering, Gui Zhou University of Engineering Science, Bijie 551700, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Anding Xu
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jie Shi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Baitao Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Liming Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Shen Y, Zheng Y, Jiang J, Guo J, Huang Y, Liu Y, Zhang H, Zhang Q, Xu J, Shao H. Li-Si alloy pre-lithiated silicon suboxide anode constructing a stable multiphase lithium silicate layer promoting Ion-transfer kinetics. J Colloid Interface Sci 2025; 679:855-867. [PMID: 39406034 DOI: 10.1016/j.jcis.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Enhancing the initial Coulombic efficiency (ICE) and cycling stability of silicon suboxide (SiOx) anode is crucial for promoting its commercialization and practical implementation. Herein, we propose an economical and effective method for constructing pre-lithiated core-shell SiOx anodes with high ICE and stable interface during cycling. The lithium silicon alloy (Li13Si4) is used to react with SiOx in advance, allowing for improved ICE of SiOx without compromising its reversible specific capacity. The pre-lithiated surface layer contains uniform multiphase lithium silicates (L2SiO3, Li4SiO4, and Li2Si2O5) in the nanoscale. This multiphase lithium silicate layer exhibits mechanical robustness against variation of micro-stress, which can act as a buffer layer to relieve volume variation. In addition, analysis of dynamic electrochemical impedance spectroscopy (dEIS) and distribution of relaxation time (DRT) confirm that the multiphase lithium silicate layer enhances Li-ion diffusion kinetics and contributed to constructing stable SEI. As a result, the optimal L10-850 anode shows a high ICE of 85.3 %, together with a high specific capacity of 1771.5mAh mg-1. This work gives a perspective strategy to modify SiOx anodes by constructing a pre-lithiated surface layer with practical application potentials.
Collapse
Affiliation(s)
- Yingying Shen
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yun Zheng
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Jiangmin Jiang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Junpo Guo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yike Huang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yinan Liu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Hebin Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jincheng Xu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China.
| |
Collapse
|
4
|
Li S, Luo J, Wang J, Zhu Y, Feng J, Fu N, Wang H, Guo Y, Tian D, Zheng Y, Sun S, Zhang C, Chen K, Mu S, Huang Y. Hybrid supercapacitors using metal-organic framework derived nickel-sulfur compounds. J Colloid Interface Sci 2024; 669:265-274. [PMID: 38718580 DOI: 10.1016/j.jcis.2024.04.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
HYPOTHESIS Metal-organic frameworks (MOFs) are highly suitable precursors for supercapacitor electrode materials owing to their high porosity and stable backbone structures that offer several advantages for redox reactions and rapid ion transport. EXPERIMENTS In this study, a carbon-coated Ni9S8 composite (Ni9S8@C-5) was prepared via sulfuration at 500 ℃ using a spherical Ni-MOF as the sacrificial template. FINDING The stable carbon skeleton derived from Ni-MOF and positive structure-activity relationship due to the multinuclear Ni9S8 components resulted in a specific capacity of 278.06 mAh·g-1 at 1 A·g-1. Additionally, the hybrid supercapacitor (HSC) constructed using Ni9S8@C-5 as the positive electrode and the laboratory-prepared coal pitch-based activated carbon (CTP-AC) as the negative electrode achieved an energy density of 69.32 Wh·kg-1 at a power density of 800.06 W·kg-1, and capacity retention of 83.06 % after 5000 cycles of charging and discharging at 5 A·g-1. The Ni-MOF sacrificial template method proposed in this study effectively addresses the challenges associated with structural collapse and agglomeration of Ni9S8 during electrochemical reactions, thus improving its electrochemical performance. Hence, a simple preparation method is demonstrated, with broad application prospects in supercapacitor electrodes.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, PR China; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Jiahuan Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, PR China; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, PR China; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China.
| | - Yue Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, PR China; Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Jingkang Feng
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Ning Fu
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Hao Wang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Yao Guo
- College of Materials Science Engineering, Anyang Institute of Technology, Anyang, 455000, PR China
| | - Dayong Tian
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Yong Zheng
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, PR China
| | - Shixiong Sun
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, PR China.
| | - Kongyao Chen
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, PR China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yunhui Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| |
Collapse
|
5
|
Liu M, Xu J, Shao L, Shi X, Li C, Sun Z. Towards metal selenides: a promising anode for sodium-ion batteries. Chem Commun (Camb) 2024; 60:6860-6872. [PMID: 38888388 DOI: 10.1039/d4cc01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Metal selenides have garnered significant attention as promising anode materials for sodium-ion batteries, thanks to their high theoretical capacity, excellent conductivity, and natural abundance. However, their potential is hampered by disappointing capacity retention and unsatisfactory lifespan, primarily attributed to volume expansion and unwanted structural collapse resulting from the insertion and extraction of relatively large Na+ ions during the charge and discharge processes. This feature article provides a brief overview of our endeavors to address the challenges associated with metal selenide-based anode materials, aiming to achieve high-performance electrode materials for sodium-ion batteries. Our strategy encompasses nanostructure design, materials composite engineering, heteroatoms doping, and topography and interface engineering. Additionally, future research directions are also outlined.
Collapse
Affiliation(s)
- Mingjie Liu
- School of Materials and Energy Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Junling Xu
- School of Materials and Energy Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Lianyi Shao
- School of Materials and Energy Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Xiaoyan Shi
- School of Materials and Energy Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, P. R. China.
| | - Zhipeng Sun
- School of Materials and Energy Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.
- Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, China.
| |
Collapse
|
6
|
Zhao W, Ma X, Wang X, Zhou H, He X, Yao Y, Ren Y, Luo Y, Zheng D, Sun S, Liu Q, Li L, Chu W, Wang Y, Sun X. Synergistically Coupling Atomic-Level Defect-Manipulation and Nanoscopic-Level Interfacial Engineering Enables Fast and Durable Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311055. [PMID: 38295001 DOI: 10.1002/smll.202311055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1, and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.
Collapse
Affiliation(s)
- Wenxi Zhao
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiaoqing Ma
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xiaodeng Wang
- School of Electronic Information and Electrical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Hao Zhou
- School of Electronic Information Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
7
|
Xu Y, Du Y, Chen H, Chen J, Ding T, Sun D, Kim DH, Lin Z, Zhou X. Recent advances in rational design for high-performance potassium-ion batteries. Chem Soc Rev 2024; 53:7202-7298. [PMID: 38855863 DOI: 10.1039/d3cs00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.
Collapse
Affiliation(s)
- Yifan Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jing Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Tangjing Ding
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dongmei Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
Wang T, Zhao W, Ren R, Lan H, Zhou T, Hu J, Jiang Q. Unveiling the bifunctional roles of Cetyltrimethylammonium bromide in construction of Nb 2CT x@MoSe 2 heterojunction for fast potassium storage. J Colloid Interface Sci 2024; 674:19-28. [PMID: 38909591 DOI: 10.1016/j.jcis.2024.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exploring robust electrode materials which could permit fast and reversible insertion/extraction of large K+ is a crucial challenge for potassium-ion batteries (PIBs). Smart interfacial design could facilitate electron/ion transport as well as assure the integrity of electrode. Herein, Cetyltrimethylammonium bromide (CTAB) was found to play bifunctional roles in construction of Nb2CTx@MoSe2 heterostructure. Firstly, functionalization of CTAB on the surface of Nb2CTx could influence the subsequent growth of MoSe2 by electrostatic effect, stereochemical effect and the synergetic Lewis acid-base interaction, leading to the formation of Nb2CTx@MoSe2 with tiled heterostructure. Secondly, the interlayer spacing of Nb2CTx was expanded from 0.77 to 1.21 nm owing to the pillar effect of CTAB. As excepted, the capacity retention was 80 % from 100 mA g-1 (406 mA h g-1) to 1000 mA g-1 concerning rate capability and the specific capacity maintained at 240 mA h g-1 (at 2000 mA g-1) over 300 cycles. The calculated DK values from Galvanostatic intermittent titration technique (GITT) measurement of the titled C-T-Nb2CTx@MoSe2@C electrode is two orders of magnitude larger than the traditional T-Nb2CTx@MoSe2@C electrode, further confirming intimate interface between MoSe2 and Nb2CTx could provide convenient potassium-ion transport channels and fast diffusion kinetics. Finally, ex-situ characterizations at different charging and discharging voltage stages, including ex-situ XRD/Raman/HRTEM/XPS have been carried out to reveal the potassium storage mechanism. This work provides a facile strategy for the regulation of interface engineering by the assist of CTAB which could extend to other MXenes-TMDs (Transition metal dichalcogenides) hybrid electrodes.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Weifang Zhao
- Ganfeng Li Energy Technology Co., Ltd., Xinyu 338000, Jiangxi, China.
| | - Ran Ren
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Huilin Lan
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Juncheng Hu
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Zhang L, Liu J, Xiao D, Chen Y, Zhang S, Yan L, Gu X, Zhao X. Reduced Graphene Oxide Modulated FeSe/C Anode Materials for High-Stable and Long-Life Potassium-Ion Batteries. Chemistry 2023; 29:e202302811. [PMID: 37758686 DOI: 10.1002/chem.202302811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Reduced graphene oxide (rGO) has been demonstrated to effectively enhance the potassium storage performance of transition metal selenides due to its robust mechanical properties and high conductivity. However, the impact of rGO on the electrode-electrolyte interface, a crucial factor in the electrochemical performance of potassium-ion batteries (PIBs), requires further exploration. In this study, we synthesized a seamless architecture of rGO on FeSe/C nanocrystals (FeSe/C@rGO). Comparative analysis between FeSe/C and FeSe/C@rGO reveals that the rGO layer exhibits robust adsorption energies towards EC and DEC, inducing the formation of organic-rich solid-electrolyte interphase (SEI) without damage to the structural integrity. Furthermore, incorporating rGO triggers K+ -ions into the double electrode layer (EDL), markedly improving the transport of K+ -ions. As a PIB anode, FeSe/C@rGO exhibits a reversible capacity of 332 mAh g-1 at 200 mA g-1 after 300 cycles, along with excellent long-term cycling stability, showcasing an ultralow decay rate of only 0.086 % per cycle after 1900 cycles at 1000 mA g-1 .
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dengji Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuhui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shuo Zhang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xin Gu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
10
|
Wu W, Yan Y, Yu Y, Wang X, Xu T, Li X. A self-sacrificing template strategy: In-situ construction of bimetallic MOF-derived self-supported CuCoSe nanosheet arrays for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:358-368. [PMID: 37413870 DOI: 10.1016/j.jcis.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.
Collapse
Affiliation(s)
- Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yingsong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
11
|
Tang T, Ren G, Wen Y, Lu M, Yao Z, Liu T, Shen S, Xie H, Xia X, Yang Y. Spatially Confined Fe 7S 8 Nanoparticles Anchored on a Porous Nitrogen-Doped Carbon Nanosheet Skeleton for High-Rate and Durable Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307432 DOI: 10.1021/acsami.3c04549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron sulfides are widely explored as anodes of sodium-ion batteries (SIBs) owing to high theoretical capacities and low cost, but their practical application is still impeded by poor rate capability and fast capacity decay. Herein, for the first time, we construct highly dispersed Fe7S8 nanoparticles anchored on a porous N-doped carbon nanosheet (CN) skeleton (denoted as Fe7S8/NC) with high conductivity and numerous active sites via facile ion adsorption and thermal evaporation combined procedures coupled with a gas sulfurization treatment. Nanoscale design coupled with a conductive carbon skeleton can simultaneously mitigate the above obstacles to obtain enhanced structural stability and faster electrode reaction kinetics. With the aid of density functional theory (DFT) calculations, the synergistic interaction between CNs and Fe7S8 can not only ensure enhanced Na+ adsorption ability but also promote the charge transfer kinetics of the Fe7S8/NC electrode. Accordingly, the designed Fe7S8/NC electrode exhibits remarkable electrochemical performance with superior high-rate capability (451.4 mAh g-1 at 6 A g-1) and excellent long-term cycling stability (508.5 mAh g-1 over 1000 cycles at 4 A g-1) due to effectively alleviated volumetric variation, accelerated charge transfer kinetics, and strengthened structural integrity. Our work provides a feasible and effective design strategy toward the low-cost and scalable production of high-performance metal sulfide anode materials for SIBs.
Collapse
Affiliation(s)
- Tiantian Tang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gaoya Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Wen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mixue Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhujun Yao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tiancun Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shenghui Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China
| | - Xinhui Xia
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yefeng Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| |
Collapse
|
12
|
Bonding iron chalcogenides in a hierarchical structure for high-stability sodium storage. J Colloid Interface Sci 2023; 637:251-261. [PMID: 36706721 DOI: 10.1016/j.jcis.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Owing to price-boom and low-reserve of Lithium ion batteries (LIBs), cost-cutting and well-stocked sodium ion batteries (SIBs) attract a lot of attention, aiming to develop an effective energy storage and conversion equipment. As a typical anode for SIBs, Iron sulfide (FeS) is difficult to maintain the high theoretical capacity. Structural instability and inherent low conductivity limit the cyclic and rate performance of FeS. Herein, hierarchical architecture of FeS-FeSe2 coated with nitrogen-doped carbon (NC) is obtained by single-step solvothermal method and two-stage high-temperature treatments. Specifically, lattice imperfections provided by heterogeneous interfaces increase the Na+ storage sites and fasten ion/electron transfer. Synergistic effect induced by the hierarchical architecture effectively enhances the electrochemical activity and reduces the resistance, which contributes to the transfer kinetics of Na+. In addition, the phenomenon that heterogeneous interfaces provide more active site and extra migration Na+ path is also proved by density functional theory (DFT). As an anode for SIBs, FeS-FeSe2/NC (FSSe/C) delivers highly reversible capacity (704.5 mAh·g-1 after 120 cycles at 0.2 A·g-1), excellent rate performance (326.3 mAh·g-1 at 12 A·g-1) and long-lasting durability (492.3 mAh·g-1 after 1000 cycles at 4 A·g-1 with 100 % capacity retention). Notably, the full battery, assembled with FSSe/C and Na3V2(PO4)3/C (NVP/C), delivers reversible capacity of 252.1 mAh·g-1 after 300 cycles at 1 A·g-1. This work provides a facile method to construct a hierarchical architecture anode for high-performance SIBs.
Collapse
|
13
|
Zhou X, Wang Z, Wang Y, Du F, Li Y, Su Y, Wang M, Ma M, Yang G, Ding S. Graphene supported FeS 2 nanoparticles with sandwich structure as a promising anode for High-Rate Potassium-Ion batteries. J Colloid Interface Sci 2023; 636:73-82. [PMID: 36621130 DOI: 10.1016/j.jcis.2022.12.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Pyrite FeS2 now emerges as a promising anode for potassium-ion batteries (PIBs) due to its low cost and high theoretical capacity. However, the significant volume expansion, low electrical conductivity, and the ambiguous mechanism related to potassium storage severely hinder its development for PIBs anodes. Herein, FeS2 nanostructures are skillfully dispersed on the graphene surface layer by layer (FeS2@C-rGO) to form a sandwich structure by using Fe-based metal organic framework (Fe-MOF) as precursors. The unique structural design can improve the transfer kinetics of K+ and effectively buffer the volume expansion during cycling, thereby enhancing the potassium storage performance. As a result, the FeS2@C-rGO delivers a high capacity of 550 mAh/g at a current density of 0.1 A/g. At a high rate of 2 A/g, the capacity can maintain 171 mAh/g even after 500 cycles. Moreover, the electrochemical reaction mechanism and potassium storage behavior are revealed by in-situ X-ray diffractionand density functional theory calculations. This work not only provides a novel insight into the structural design of electrode materials for high-performance PIBs, but also proposes a valuable understanding of the potassium storage mechanism of the FeS2-based anode.
Collapse
Affiliation(s)
- Xinyu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziwei Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yajun Wang
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Fan Du
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Yinhuan Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyue Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingming Ma
- Shaanxi Yulin Energy Group Energy and Chemical Research Institute Co., Ltd., Yulin 719000, China
| | - Guorui Yang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|