1
|
Khan M, Ahmed MM, Akhtar MN, Sajid M, Riaz NN, Asif M, Kashif M, Shabbir B, Ahmad K, Saeed M, Shafiq M, Shabir T. Fabrication of CuWO 4@MIL-101 (Fe) nanocomposite for efficient OER and photodegradation of methylene blue. Heliyon 2024; 10:e40546. [PMID: 39654752 PMCID: PMC11626014 DOI: 10.1016/j.heliyon.2024.e40546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
The development of an efficient catalyst to meet the world's increasing energy demand and eliminate organic pollutants in water, is a concern of current researchers. In this article, a highly effective composite has been synthesized using the solvothermal approach, by incorporating CuWO4 nanoparticles into Fe-based MOF, Fe (BDC). The synthesized samples were analyzed further by some characterization techniques such as X-ray diffraction, Fourier transform infrared spectroscope (FTIR) and scanning electron microscopy. The highest catalytic activity for the oxygen evolution reaction was observed in the CuWO4@MIL-101(Fe) composite, which exhibited low overpotential 188 mV to obtained the current density of 10 mA cm-2, and a smaller Tafel slope of 40 mV dec-1. The nanocomposite CuWO4@MIL-101(Fe) material showed enhanced visible light absorption and maximum degradation of methylene blue up to 96.92 %. It has been found that this research promotes the development of an efficient MOF-based catalyst for OER and photocatalytic technology.
Collapse
Affiliation(s)
- Mariam Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Chemistry, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | | | | | - Muhammad Sajid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nagina Naveed Riaz
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Asif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Bushra Shabbir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Khalil Ahmad
- Department of Chemistry, University of Management and Technology: Lahore, Sialkot Campus, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences, Pakistan
| | - Maryam Shafiq
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Tayyaba Shabir
- Department of Chemistry, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
2
|
Wang Y, Yang J, Wang B, Chen M, Ran L, Liu S, Zhou M, Zhang L, Jiang Y, Dai X, Lin L, Zhang Y. Fabrication of close-contact S-scheme Cr 2Bi 3O 11-Bi 2O 3/Fe 3O 4@porous carbon microspheres based on in-situ reaction: Enhanced photo-Fenton wastewater treatment. J Colloid Interface Sci 2024; 673:690-699. [PMID: 38901359 DOI: 10.1016/j.jcis.2024.06.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Low photo-induced carrier recombination rate, exceptional light absorption, and advantageous recycling performance are crucial attributes of semiconductor photocatalyst for wastewater purification. Herein, based on in-situ reaction, close-contact S-scheme bismuth chromate/bismuth oxide/ferroferric oxide@porous carbon microspheres (Cr2Bi3O11-Bi2O3/Fe3O4@PCs) (F-CBFP) was fabricated using alginates as precursor. Due to the abundance of functional groups on the porous carbon (PCs), Bi2O3 and Cr2Bi3O11 nanoparticles (NPs) are in situ deposited onto the highly conductive 3D magnetic porous Fe3O4@PCs microsphere surface, which not only form tight interfacial contacts and reduces interfacial potential barriers but also prevent agglomeration or shedding of the NPs during photocatalytic reactions. Moreover, density functional theory (DFT) calculations further confirm that the formation of a robust built-in electric field (BIEF) within F-CBFP prompts photo-induced electrons in the conduction band (CB) of Bi2O3 to combine with holes in the valence band (VB) of Cr2Bi3O11, effectively constructing a S-scheme heterojunction system. Also, Fe3O4 can act as a Fenton catalyst, activating the H2O2 generated by Cr2Bi3O11 under illumination. In wastewater treatment, the obtained F-CBFP shows remarkable photo-Fenton degradation (towards methyl orange (97.8 %, 60 min) and tetracycline hydrochloride (95.3 %, 100 min)) and disinfection performance (100 % E. coli inactivation), and exceptional cyclic stability.
Collapse
Affiliation(s)
- Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Jia Yang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bolin Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Maoli Chen
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Linlin Ran
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shuting Liu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Meng Zhou
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Lin
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
3
|
Liu X, Xu J, Su X, Li Z, Tian Y, Zhang Y, Liu B, Yue G, Tian Y. Regulating superstructures of conjugated polymers towards enhanced and stable photocatalytic hydrogen evolution via covalent crosslinking and complementary supramolecular self-assembly. J Colloid Interface Sci 2024; 671:779-789. [PMID: 38833910 DOI: 10.1016/j.jcis.2024.05.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The modulation of microstructures in conjugated polymers represents a viable strategy for enhancing photocatalytic efficiency, albeit hampered by complex processing techniques. Here, we present an uncomplicated, template-free method to synthesize polymeric photocatalysts, namely BCN(x)@PPy, featuring a hollow nanotube-nanocluster core-shell superstructure. This configuration is realized through intramolecular covalent crosslinking and synergistic intermolecular donor-acceptor (D-A) interactions between phenylene pyrene (PPy, D) nanotubes and poly([1,1'-biphenyl]-3-carbonitrile) (PBCN, A) nanoclusters. Interestingly, the optimized BCN2@PPy composite demonstrates remarkably enhanced performance for photocatalytic hydrogen evolution, with an efficiency of 14.7-fold higher than that of unmodified PPy nanotubes. Experimental and density functional theory calculations revealed that BCN(x)@PPy composites are conducive to shortening photogenerated exciton migration, facilitating charge separation and transfer, reducing nanoclusters aggregation or re-stacking, and providing sufficient catalytically active sites, all contributing to the heightened efficiency in photocatalysis. These insights underscore the potential for precise molecular adjustments in conjugated polymers, advancing artificial photosynthesis.
Collapse
Affiliation(s)
- Xinyi Liu
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiejie Xu
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaohong Su
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yongjia Zhang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, PR China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, PR China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
4
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
5
|
Li G, Li J, Wang K, Zhang J, Liao K, Zhang H. V-Doped CoSe 2 Nanowire Catalysts in a 3D-Structured Electrode for Durable Li-S Pouch Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35123-35133. [PMID: 38923884 DOI: 10.1021/acsami.4c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lithium-sulfur (Li-S) batteries have high theoretical energy density and are regarded as a promising candidate for next-generation energy storage systems. However, their practical applications are hindered by the slow kinetics of sulfur conversion and polysulfide shuttling. In particular, large-scale pouch cells show much poor cyclability. Here, we develop a high-efficiency catalyst of V-doped CoSe2 by studying the binary CoSe2-VSe2 system and confirming its effectiveness in accelerating polysulfide conversion. The coin cell tests reveal an initial capacity of 1414 mAh g-1 at 0.1 C and 1049 mAh g-1 at 1 C and demonstrate 1000 times cyclability with a decaying rate of 0.05% per cycle. Furthermore, the assembly and construction of pouch cells were optimized with monolithic three-dimensional (3D) electrodes and a multistacking strategy. Specifically, a 3D metallic scaffold (3MS) was developed to host V-doped CoSe2 nanowires and sulfur. In addition, Janus microspheres of C@TiO2 were synthesized to capture polar polysulfides with their polar part of TiO2 and adsorb nonpolar sulfur with their nonpolar part of carbon. By integrating with 3MS, C@TiO2 microspheres can block all ion channels of 3MS and only allow Li ions in and out. These integral designs and monolithic structures enable multistacking pouch cells with high cyclability. A high-loading pouch cell was demonstrated with a total capacity of 700 mAh. The cell can be cycled for 70 times with a capacity retention of 65.7%. In brief, this work provides an integral strategy of catalyst design and overall 3D assembly for practical Li-S batteries in a large pouch cell format.
Collapse
Affiliation(s)
- Guangyue Li
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatong Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kui Wang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Chengdu Institute of Advanced Metal Materials Industrial Technology Co., Ltd., Chengdu 610399, China
| | - Jianbo Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Chengdu Institute of Advanced Metal Materials Industrial Technology Co., Ltd., Chengdu 610399, China
| | - Kaiming Liao
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
6
|
Sukanya R, Chavan PR, Karthik R, Hasan M, Shim JJ, Breslin CB. Synergistic Effect of 3D/2D Vanadium Diselenide/Tungsten Diselenide Hybrid Materials: Electrochemical Detection of 5-Nitroquinoline a Hazard to the Aquatic Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33325-33335. [PMID: 38885042 PMCID: PMC11231969 DOI: 10.1021/acsami.4c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The development of multidimensional structured electrode materials with simple synthetic methods and their electrochemical sensing ability against environmental pollution is still a challenge. In this article, we propose a hybrid formed using multidimensional (3D/2D) vanadium diselenide microspheres and tungsten diselenide nanosheets (VSe2/WSe2) for the electrochemical detection of 5-nitroquinoline (5-NQ), a highly toxic and hazardous substance that is polluting aquatic life due to increasing industrial activities. The 3D/2D VSe2/WSe2 hybrids were prepared by a simple solvothermal method and their morphological and structural analysis was confirmed by various spectroscopy and analytical techniques such as powder X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The proposed 3D/2D architecture showed a strong synergistic effect between the two components as well as high electrical conductivity. As a result, an increased peak current for the reduction and detection of 5-NQ was achieved compared to other modified and unmodified disposable screen-printed electrodes (SPE), such as bare SPE, VSe2/SPE, and WSe2/SPE. Under the optimized electrochemical conditions, VSe2/WSe2/SPE showed large linear response ranges (0.012-1053, 1183-3474 μM), a low detection limit (0.002 μM), good sensitivity along with good selectivity, and repeatability for the detection of 5-NQ. With this prominent electrochemical behavior, the VSe2/WSe2 electrode has clear potential to produce high-performance sensor devices.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- Department
of Chemistry, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland
| | - Prajakta R. Chavan
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic
of Korea
| | - Raj Karthik
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic
of Korea
- Centre
of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry,
Saveetha Dental College and Hospitals, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Saveetha
University, Chennai 600 077, India
| | - Mahmudul Hasan
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic
of Korea
| | - Jae-Jin Shim
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic
of Korea
| | - Carmel B. Breslin
- Department
of Chemistry, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland
| |
Collapse
|
7
|
Gu YH, Shao MF, Zhang J, Li R, Huang N, Liu Q, Zhao JG, Zhang WY, Zhang XH, Peng F, Li WQ, Li J. Interfacial Engineering of MoS 2@CoS 2 Heterostructure Electrocatalysts for Effective pH-Universal Hydrogen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10518-10525. [PMID: 38719232 DOI: 10.1021/acs.langmuir.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The practical utilization of the hydrogen evolution reaction (HER) necessitates the creation of electrocatalysts that are both efficient and abundant in earth elements, capable of operating effectively within a wide pH range. However, this objective continues to present itself as an arduous obstacle. In this research, we propose the incorporation of sulfur vacancies in a novel heterojunction formed by MoS2@CoS2, designed to exhibit remarkable catalytic performances. This efficacy is attributed to the advantageous combination of the low work function and space charge zone at the interface between MoS2 and CoS2 in the heterojunction. The MoS2@CoS2 heterojunction manifests outstanding hydrogen evolution activity over an extensive pH range. Remarkably, achieving a current density of 10 mA cm-2 in aqueous solutions 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline (PBS), respectively, requires only an overpotential of 48, 62, and 164 mV. The Tafel slopes for each case are 43, 32, and 62 mV dec-1, respectively. In this study, the synergistic effect of MoS2 and CoS2 is conducive to electron transfer, making the MoS2@CoS2 heterojunction show excellent electrocatalytic performance. The synergistic effects arising from the heterojunction and sulfur vacancy not only contribute to the observed catalytic prowess but also provide a valuable model and reference for the exploration of other efficient electrocatalysts. This research marks a significant stride toward overcoming the challenges associated with developing electrocatalysts for practical hydrogen evolution applications.
Collapse
Affiliation(s)
- Yan-Hong Gu
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
- New Energy Technology Engineering Lab of Jiangsu Province College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Mei-Fang Shao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Rui Li
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Niu Huang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Qiang Liu
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Jian-Guo Zhao
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Wei-Ying Zhang
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Xiang-Hui Zhang
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Feng Peng
- School of Physics and Electronic Information and Key Lab Electromagnet Transformat&Detect Henan, Luoyang Normal College, Luoyang, Henan 471022, P. R. China
| | - Wen-Qiang Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Jin Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
8
|
Li J, Yan S, Du M, Zhang J, Wu N, Liu G, Chen H, Yuan C, Qin A, Liu X. The impact of support electronegativity on the electrochemical properties of platinum. J Colloid Interface Sci 2024; 662:183-191. [PMID: 38341941 DOI: 10.1016/j.jcis.2024.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Modulating the electronic structure of platinum (Pt) through a support is an important strategy for enhancing its electrocatalytic properties. In this work, to explore the impact of support electronegativity on Pt's catalytic activity for hydrogen evolution, we chose diverse metals with varying electronegativities that are stable in acidic solutions, such as titanium (Ti), molybdenum (Mo), and tungsten (W), as supports. Ti is the optimal support according to density functional theory (DFT) calculations. As expected, the Pt@Ti catalyst demonstrated remarkable efficiency in the hydrogen evolution reaction (HER), displaying a minimal overpotential of 13 mV at -10 mA cm-2, a Tafel slope of 34.5 mV dec-1, and sustained durability over 110 h in a 0.5 M H2SO4 solution. To unravel the metal-support interaction (MSI) between Pt and Ti, a comprehensive exploration encompassing both experimental investigations and DFT calculations was undertaken. The results elucidate that the outstanding HER performance of Pt@Ti stems from robust synergies forged between Pt and Ti atoms within the Ti support. This work not only furnishes a technique for producing electrocatalysts with superior efficiency and stability but also streamlines the process of choosing the most appropriate metal support. Moreover, it enhances comprehension of the interaction between Pt and the metal support.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Shuo Yan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources School of Chemical Engineering and Technology Xinjiang University Urumqi, Xinjiang 830046, PR China
| | - Meng Du
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, PR China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan 250022, PR China
| | - Aimiao Qin
- Guangxi Key Lab of Optical and Electronic Materials and Devices, College of Materials Science & Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
9
|
Liu L, Xu J, Cao J, Liu Y, Bai Y, Ma X, Yang X. Sublayer-Sulfur-Vacancy-Induced Charge Redistribution of FeCuS Nanoflower Awakening Alkaline Hydrogen Evolution. Inorg Chem 2024; 63:7946-7954. [PMID: 38619069 DOI: 10.1021/acs.inorgchem.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Advancing the progress of sustainable and green energy technologies requires the improvement of valid electrocatalysts for the hydrogen evolution reaction (HER). Reconfiguring charge distribution through heteroatom doping-induced vacancy serves as an effective approach to implement high performance for HER catalysts. Here, we successfully fabricated Fe-doped CuS (FeCuS) with the sublayer sulfur vacancy to judge its HER performance and dissect the activity origins. Density functional theory calculation further elucidates that the primary factor contributing to the heightened HER activity is that the sublayer sulfur vacancies awaken the charge redistribution. In addition to effectively decreasing the energy barrier associated with the Volmer step, it modulates the adsorption/desorption capacity of H*. As a result, its intrinsic activity for the HER has significantly increased. Concretely, the obtained FeCuS displays an excellent catalytic performance, whose Tafel slope is only 59 mV dec-1 and the overpotential (at 10 mA cm-2) is as low as 71 mV in an alkaline environment, surpassing the majority of previously documented catalysts in scientific literature. This work shows that the construction of sublayer sulfur vacancies by Fe doping can achieve the charge redistribution and precise tuning of electronic structure; thereby, the inert CuS can be transformed into highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jie Xu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Jinming Cao
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yangxi Liu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yuanjuan Bai
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
10
|
Ding X, Xue Y, Wang J, Tian J. Semimetal 1T' phase molybdenum sulfide decorated on zinc indium sulfide with S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 659:225-234. [PMID: 38176232 DOI: 10.1016/j.jcis.2023.12.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Heterojunction engineering is an effective strategy to improve photocatalytic performance. Two-dimensional (2D)/2D semimetal 1T' phase molybdenum sulfide/zinc indium sulfide (1T'-MoS2/ZnIn2S4) S-scheme heterojunctions with tight and stable interfaces were synthesized by a simple hydrothermal synthesis method. Under the optimal 1T'-MoS2 loading ratio (5 wt%), the hydrogen production rate of 1T'-MoS2/ZnIn2S4 composites reaches 11.42 mmol h-1 g-1, which is 3.1 and 1.4 times higher than that of pure ZnIn2S4 (2.9 mmol h-1 g-1) and ZnIn2S4/Pt (8.01 mmol h-1 g-1), and the apparent quantum efficiency (AQE) reaches 53.17 % (λ = 370 nm). Semimetal 1T' phase MoS2 on ZnIn2S4 broadens the light absorption range, enhances the light absorption ability, promotes electron transfer, and offers abundant active sites. The establishment of S-scheme heterojunctions achieves the spatial separation of photogenerated charges and increases the reduction potential. This work provides insights for the design of novel photocatalysts.
Collapse
Affiliation(s)
- Xiaoyan Ding
- School of Materials Science and Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jingjing Wang
- School of Materials Science and Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
11
|
Ma T, Li W, Li J, Duan W, Gao F, Liao G, Li J, Wang C. Multisite Cocatalysis: Single atomic Pt 2+/Pt 0 active sites synergistically improve the simulated sunlight driven H 2O-to-H 2 conversion performance of Sb 2S 3 nanorods. J Colloid Interface Sci 2024; 658:476-486. [PMID: 38128191 DOI: 10.1016/j.jcis.2023.12.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Single atomic metal (SAM) cocatalysis is a potential strategy to improve the performance of photocatalytic materials. However, the cocatalytic mechanism of SAM sites in different valence states is rarely reported. Herein, single atomic Pt2+/Pt0 active sites were anchored on Sb2S3 nanorods to synergistically improve the photoactivity for hydrogen production under simulated sunlight. Experimental results and density functional theory calculations indicated that the coexistence of single atomic Pt2+/Pt0 sites synergistically improves the broadband light harvesting and promotes the Sb2S3-to-Pt electron transfer following inhibited photoexciton recombination kinetics and enhanced H proton adsorption capacity, resulting higher and more durable photoactivity for hydrogen production. Therefore, the optimal Sb2S3-Pt0.9‰ composite catalyst achieved remarkably enhanced hydrogen evolution rate of 1.37 mmol∙g-1∙h-1 (about 105-fold greater of that of Sb2S3 NRs) under faintly alkaline condition, and about 5.41 % of apparent quantum yield (AQY700 nm) was achieved, which shows obvious superiority in hydrogen production by contrasting with the reported Sb2S3-based photocatalysts and conventional semiconductor photocatalytic materials modified with noble metals. This study elucidate a well-defined mechanism of multisite cocatalysis for photoactivity improvement.
Collapse
Affiliation(s)
- Tenghao Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Jiayuan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
12
|
Li D, Guo Z, Zhao R, Ren H, Huang Y, Yan Y, Cui W, Yao X. An efficient cerium dioxide incorporated nickel cobalt phosphide complex as electrocatalyst for All-pH hydrogen evolution reaction and overall water splitting. J Colloid Interface Sci 2024; 653:1725-1742. [PMID: 37827011 DOI: 10.1016/j.jcis.2023.09.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Transition metal phosphides (TMPs) have been considered as potential electrocatalysts with adjustable valence states, metal characteristics, and phase diversity. However, it is necessary but remains a major challenge to obtain efficient and durable TMPs catalysts, which can realize efficiently for not only all-pH hydrogen evolution reaction (HER), but also oxygen evolution reaction (OER). Hence, cerium dioxide incorporated nickel cobalt phosphide growth on nickel foam (CeO2/NiCoP) is fabricated by hydrothermal and phosphating reaction. CeO2/NiCoP shows excellent activity for all-pH HER (overpotentials of 48, 58 and 72 mV in alkaline, neutral and acidic solution at the current density of 10 mA cm-2), and has a small OER overpotential (231 mV @ 10 mA cm-2). Moreover, the voltage of overall water splitting in alkaline solution and simulated seawater electrolyte is only 1.46 and 1.41 V (10 mA cm-2), respectively, coupled with outstanding operational stability and corrosion resistance. Further mechanism research shows that CeO2/NiCoP possesses rich heterointerfaces, which serves more exposed active sites and possesses a promising superhydrophilic and superaerophobic surface. Density functional theory calculations manifest that CeO2/NiCoP has appropriate energy for intermediates of reactions. This work provides a deep insight into the CeO2/NiCoP catalyst for high-performance water/seawater electrolysis.
Collapse
Affiliation(s)
- Dongxiao Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhimin Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ruihuan Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Ren
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yubiao Huang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Yan
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; Binzhou Institute of Technology, Binzhou 256606, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology Research Center for Environment Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
13
|
Wang J, Gong Z, Zhang Y, Song Y, Chen X, Lu Z, Jiang L, Zhu C, Gao K, Wang K, Wang J, Yu L, Khayour S, Xie H, Li Z, Lu G. Selectively Adsorbed p-Aminothiophenol Molecules Improve the Electrocatalytic and Photo-Electrocatalytic Hydrogen Evolution on Au/TiO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54550-54558. [PMID: 37968852 DOI: 10.1021/acsami.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is receiving increasing attention as an effective process to produce clean energy. The commonly used precious metal catalysts can be hybridized with semiconductors to form heterostructures for the improvement of catalytic efficiency and reduction of cost. It will be promising to further improve the efficiency of heterostructure-based nanocatalysts in electrocatalytic and photocatalytic HER using a simple and effective method. Herein, we improve the efficiency of Au/TiO2 in electrocatalytic and photo-electrocatalytic HER by selectively adsorbing p-aminothiophenol (PATP) molecules. The PATP molecules are adsorbed on the gold surface by using a simple solution-based method and favor the charge separation at the Au-TiO2 interface. We also compare the PATP molecules with other thiophenol molecules in the enhancement of electrocatalytic HER. The PATP-induced enhancement in electrocatalysis is then further investigated by density functional theory (DFT) calculations, and this enhancement is attributed to a reduction in Gibbs energy of adsorbed hydrogen after surface adsorption of PATP molecules. This work provides a simple, cost-effective, and highly efficient approach to improve the electrocatalytic and photo-electrocatalytic efficiency of Au/TiO2, and this approach could be easily extended to other heterostructure-based nanocatalysts for performance enhancement and may be used in many other catalytic reactions.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongyan Gong
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yulong Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaxin Song
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xinya Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhihao Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengcheng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kun Gao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Soukaina Khayour
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, second Floor, Building 2, Xixi Legu Creative Pioneering Park, 712 Wen'er West Road, Xihu District, Hangzhou 310003, P. R. China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
14
|
Zheng Y, Mou Y, Wang Y, Wan J, Yao G, Feng C, Sun Y, Dai L, Zhang H, Wang Y. Aluminum-incorporation activates vanadium carbide with electron-rich carbon sites for efficient pH-universal hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:367-375. [PMID: 37995406 DOI: 10.1016/j.jcis.2023.11.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Vanadium carbide (VC) is the greatest potential hydrogen evolution reaction (HER) catalyst because of its platinum-like property and abundant earth reserves. However, it exhibits insufficient catalytic performance due to the unfavorable interaction of reaction intermediates with catalysts. In this work, using NH4VO3 as the main raw material, the flow ratio of CH4 to Ar was accurately controlled, and a non-transition metal Al-doped into VC (100) nano-flowers with carbon hybrids on nickel foams (Al-VC@C/NF) was prepared for the first time as a high-efficiency HER catalyst by chemical vapor carbonization. The overpotential of Al-VC@C/NF catalysts in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm-2 are only 58 mV and 97 mV, respectively, which are the best HER performance among non-noble metal vanadium carbide based catalysts. Simultaneously, Al-VC@C/NF exhibits small Tafel slope (45 mV dec-1 and 73 mV dec-1) and excellent stability in acidic and alkaline media. Theoretical calculations demonstrate that doped Al atoms can induce electron redistribution on the vanadium carbide surface to form electron-rich carbon sites, which significantly reduces the energy barrier during the HER process. This work provides a new tactic to modulate vanadium-based carbons as efficient HER catalysts through non-transition metal doping.
Collapse
Affiliation(s)
- Yanan Zheng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yiwei Mou
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Guangxu Yao
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Yue Sun
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Longhua Dai
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| |
Collapse
|
15
|
Wang B, Yang F, Feng L. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302866. [PMID: 37434101 DOI: 10.1002/smll.202302866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Water splitting is a promising technique in the sustainable "green hydrogen" generation to meet energy demands of modern society. Its industrial application is heavily dependent on the development of novel catalysts with high performance and low cost for hydrogen evolution reaction (HER). As a typical non-precious metal, cobalt-based catalysts have gained tremendous attention in recent years and shown a great prospect of commercialization. However, the complexity of the composition and structure of newly-developed Co-based catalysts make it urgent to comprehensively retrospect and summarize their advance and design strategies. Hence, in this review, the reaction mechanism of HER is first introduced and the possible role of the Co component during electrocatalysis is discussed. Then, various design strategies that could effectively enhance the intrinsic activity are summarized, including surface vacancy engineering, heteroatom doping, phase engineering, facet regulation, heterostructure construction, and the support effect. The recent progress of the advanced Co-based HER electrocatalysts is discussed, emphasizing that the application of the above design strategies can significantly improve performance by regulating the electronic structure and optimizing the binding energy to the crucial intermediates. At last, the prospects and challenges of Co-based catalysts are shown according to the viewpoint from fundamental explorations to industrial applications.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Siwangting Road, Yangzhou, 225002, China
| |
Collapse
|
16
|
Li J, Wu N, Zhang J, Wu HH, Pan K, Wang Y, Liu G, Liu X, Yao Z, Zhang Q. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:227. [PMID: 37831203 PMCID: PMC10575847 DOI: 10.1007/s40820-023-01192-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Naiteng Wu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, People's Republic of China
| | - Hong-Hui Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 8588, USA.
| | - Kunming Pan
- Henan Key Laboratory of High-Temperature Structural and Functional Materials, National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Yingxue Wang
- National Engineering Laboratory for Risk Perception and Prevention, Beijing, 100041, People's Republic of China.
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, People's Republic of China.
| | - Zhenpeng Yao
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200000, People's Republic of China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
17
|
Zhang J, Zhao W, Qian C, Cui Y, Li Y, Chen W, Li J, Huang H, Li X, Zhu X. Facile construction of a sulfur vacancy defect-decorated CoS x@In 2S 3 core/shell heterojunction for efficient visible-light-driven photocatalytic hydrogen evolution. Dalton Trans 2023; 52:12899-12908. [PMID: 37642527 DOI: 10.1039/d3dt02213g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photoinduced electron-separation and -transport processes are two independent crucial factors for determining the efficiency of photocatalytic hydrogen production. Herein, a sulfur vacancy defect-decorated CoSx@In2S3 (CoSx@VS-In2S3) core/shell heterojunction photocatalyst was synthesized via an in situ sulfidation method followed by a liquid-phase corrosion process. Photocatalytic hydrogen evolution experiments showed that the CoSx@VS-In2S3 nanohybrids delivered an attractive photocatalytic activity of 4.136 mmol h-1 g-1 under visible-light irradiation, which was 8.23 times higher than that of the pristine In2S3 samples. As expected, VS could enhance the charge-separation efficiency of In2S3 through rearranging the electrons of the In2S3 basal plane, in addition to improving the electron-transfer efficiency, as visually verified by transient absorption spectroscopy. Mechanism studies based on density functional theory calculations confirmed that the In atoms adjacent to VS played a key role in the translation, rotation, and transformation of electrons for water reduction. This scalable strategy focused on defect engineering paves a new avenue for the design and assembly of 2D core/shell heterostructures for efficient and robust water-splitting photocatalysts.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Weixian Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China
| | - Canhui Qian
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, P. R. China.
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Wei Chen
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou, Zhejiang Province, 318000, P. R. China
| | - Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
18
|
Hu S, Xiang C, Zou Y, Xu F, Sun L. Synthesis of NiMoO 4/NiMo@NiS Nanorods for Efficient Hydrogen Evolution Reactions in Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1871. [PMID: 37368301 DOI: 10.3390/nano13121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm-2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.
Collapse
Affiliation(s)
- Sen Hu
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
| | - Cuili Xiang
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yongjin Zou
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lixian Sun
- School of Material Science & Engineering, Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
- School of Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
19
|
Zhang J, Li L, Du M, Cui Y, Li Y, Yan W, Huang H, Li X, Zhu X. Single-Atom Phosphorus Defects Decorated CoP Cocatalyst Boosts Photocatalytic Hydrogen Generation Performance of Cd 0.5 Zn 0.5 S by Directed Separating the Photogenerated Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300402. [PMID: 36808810 DOI: 10.1002/smll.202300402] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Indexed: 05/18/2023]
Abstract
Design and preparation of an efficient and nonprecious cocatalysts, with structural features and functionality necessary for improving photocatalytic performance of semiconductors, remain a formidable challenge until now. Herein, for the first time, a novel CoP cocatalyst with single-atom phosphorus vacancies defects (CoP-Vp ) is synthesized and coupled with Cd0.5 Zn0.5 S to build CoP-Vp @Cd0.5 Zn0.5 S (CoP-Vp @CZS) heterojunctions photocatalysts via a liquid phase corrosion method following by an in suit growth process. The nanohybrids deliver an attractive photocatalytic hydrogen production activity of 2.05 mmol h-1 30 mg-1 under visible-light irradiation, which is 14.66 times higher than that of the pristine ZCS samples. As expected, CoP-Vp further enhances the charge-separation efficiency of ZCS, in addition to the improvement of the electron transfer efficiency, which is confirmed by the ultrafast spectroscopies. Mechanism studies based on density functional theory calculations verify that Co atoms adjacent with single-atom Vp play the key role in translation, rotation, and transformation of electrons for H2 O reduction. This scalable strategy focusing defect engineering provides a new insight into designing the highly active cocatalysts to boost the photocatalytic application.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Lutao Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Ming Du
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Cui
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, 210003, P. R. China
| | - Yonghua Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Wei Yan
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, P. R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, Jiangsu, 210023, P. R. China
| | - Xinbao Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
20
|
Hao L, He H, Qin J, Ma C, Luo L, Yang L, Huang H. MXene Nanosheets Induce Efficient Iron Selenide Active Sites to Boost the Electrocatalytic Hydrogen Evolution Reaction. Inorg Chem 2022; 61:21087-21094. [PMID: 36516980 DOI: 10.1021/acs.inorgchem.2c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Along with the widespread utilization of hydrogen energy, the rise of highly active hydrogen evolution electrocatalysts with affordable costs presently becomes a substantial crux of this emerging domain. In this work, we demonstrate a feasible and convenient in situ seed-induced growth strategy for the construction of small-sized FeSe2 nanoparticles decorated on two-dimensional (2D) superthin Ti3C2Tx MXene sheets (FeSe2/Ti3C2Tx) through a manipulated bottom-up synthetic procedure. By virtue of the distinctive 0D/2D heterostructures, abundant exposed surface area, well-distributed FeSe2 catalytic centers, strong surface electronic coupling, and high electrical conductivity, the resultant FeSe2/Ti3C2Tx nanoarchitectures are endowed with a superior electrocatalytic hydrogen evolution capacity including a competitive onset potential of 89 mV, a favorable Tafel slope of 78 mV dec-1, and a long-period stability, significantly better than that of the pristine FeSe2 and Ti3C2Tx catalysts.
Collapse
Affiliation(s)
- Linlin Hao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Jinlong Qin
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chenyu Ma
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lang Luo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| |
Collapse
|