1
|
Chen M, Zhou M, Wang Y, Mao C, Pang S, Meng T, Yang X. Carboxymethyl cellulose and sodium alginate-enhanced hydrogel for carbon dots loading: A novel platform for pH sensing and sensitive detection of Al 3+ and Ag . Int J Biol Macromol 2025; 307:141955. [PMID: 40074127 DOI: 10.1016/j.ijbiomac.2025.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
To address the challenges associated with the storage and application of traditional carbon dot (CDs) solutions, this study introduces a cyan fluorescent carbon dot-based hydrogel (CDs-SCH). The hydrogel was synthesized by integrating cyan fluorescent CDs, derived from penicillamine and m-phenylenediamine, with carboxymethylcellulose (CMC) and sodium alginate (SA), which was then mixed with acrylamide (AM). The resulting CDs-SCH hydrogel was extensively characterized, focusing on its morphology, chemical structure, and fluorescence behavior. The fluorescence intensity of the hydrogel was enhanced by 3.23 times compared to the original CDs. The fluorescence response of the CDs-SCH hydrogel to pH variations was examined, demonstrating its capability to visually monitor the freshness of aquatic products such as fish and shrimp. Furthermore, Al3+ and Ag+ ions were found to significantly modulate the fluorescence, with Al3+ enhancing and Ag+ quenching the fluorescence, displaying reliable detection limits and linearity. The hydrogel's ability to detect glutathione (GSH) via Ag+ reduction to Ag was also explored. Additionally, the hydrogel exhibited stable Al3+ adsorption, with the process following pseudo-second-order kinetics and the Langmuir adsorption model. As a versatile and responsive material, the CDs-SCH hydrogel holds potential for applications in intelligent food packaging and environmental ion detection.
Collapse
Affiliation(s)
- Miaomiao Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Meng Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yunyun Wang
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| | - Caihong Mao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Shujie Pang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| | - Ting Meng
- Changchun Dongshi Technology (Group) Co., Ltd, Changchun 130031, China.
| | - Xudong Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
2
|
Komba S. Synthesis of D-glucono-1,4-lactones modified with linear saturated fatty acids as novel low molecular-weight organogelators and evaluation of their physical properties. SOFT MATTER 2025; 21:1970-1983. [PMID: 39967418 DOI: 10.1039/d4sm01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
To develop a novel low molecular-weight organogelator, D-glucono-1,4-lactones were synthesized with all hydroxy groups esterified with linear saturated fatty acids, and their gelation ability was evaluated. When a fatty acid was introduced, the six-membered ring D-glucono-1,5-lactone transformed into a five-membered ring D-glucono-1,4-lactone, regardless of the length of the fatty acid. However, the gelation ability depended on the length of the fatty acid, and compounds esterified with palmitic acid (16 carbons) and stearic acid (18 carbons) showed a better gelation ability. Electron microscopy showed that the structure of the xerogels varied with the length of the fatty acids. Some xerogels formed fibrous structures and others formed plate-like crystals, building up to a porous structure. In addition to their physical properties as an organogelator, their emulsification ability and crystal polymorphism were confirmed, and detailed polymorphic crystal analysis through FT-IR was performed to estimate the intermolecular packing structure at the molecular level.
Collapse
Affiliation(s)
- Shiro Komba
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
3
|
Hu Y, Seivert O, Tang Y, Karahan HE, Bianco A. Carbon Dot Synthesis and Purification: Trends, Challenges and Recommendations. Angew Chem Int Ed Engl 2024; 63:e202412341. [PMID: 39163190 DOI: 10.1002/anie.202412341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Carbon dots (CDs) have rapidly emerged as a new family of carbon-based nanomaterials since their initial discovery two decades ago. Numerous appealing properties, such as precursor and synthesis process flexibility, tunable photoluminescence, and good biocompatibility, have enabled their widespread applications in sensing, catalysis, energy, and biomedical fields. As the field expands, notable efforts have recently focused on mechanistically elucidating the structural formation and optical behavior of CDs. However, the absence of "clean" CDs presents a major obstacle to achieving a solid understanding of these aspects. Often, the claimed CDs are, in fact, a mixture of small molecules, oligomers, nano-sized aggregates, or even microparticles. Such coexistence of impurities markedly impacts the physicochemical properties of resulting CD-based mixtures, hampering the resolution of key mechanistic questions. Here, we aim to address this fundamental shortcoming of the field, going beyond the customary focus of the existing reviews that predominantly cover synthesis, optical performance, and application prospects. We begin with an overview of CD synthesis and then thoroughly examine the purification methods, including filtration, dialysis, electrophoresis, and chromatography. The insights provided here will guide the researchers towards obtaining high-quality CDs, employing proper combinations of available tools, and ultimately paving the way for more demanding applications.
Collapse
Affiliation(s)
- Yalei Hu
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Océane Seivert
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Yue Tang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Hüseyin Enis Karahan
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| |
Collapse
|
4
|
Liu H, Zhang T, Zheng M, Xie Z. Tumor associated antigens combined with carbon dots for inducing durable antitumor immunity. J Colloid Interface Sci 2024; 673:594-606. [PMID: 38897061 DOI: 10.1016/j.jcis.2024.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Although therapeutic nanovaccines have made a mark in cancer immunotherapy, the shortcomings such as poor homing ability of lymph nodes (LNs), low antigen presentation efficiency and low antitumor efficacy have hindered their clinical transformation. Accordingly, we prepared advanced nanovaccines (CMB and CMC) by integrating carbon dots (CDs) with tumor-associated antigens (B16F10 and CT26). These nanovaccines could forwardly target tumors harbouring LNs, induce strong immunogenicity for activating cytotoxic T cells (CTLs), thereby readily eliminating tumor cells and suppressing primary/distal tumor growth. This work provides a promising therapeutic vaccination strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Tao Zhang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.
| |
Collapse
|
5
|
Guo T, Sun H, Liu C, Yang F, Hou D, Zheng Y, Gao H, Shi R, He X, Lin X. Twisted Structure Induced Solid-State Fluorescence and Room-Temperature Phosphorescence from Furan-Based Carbon Dots. Inorg Chem 2024; 63:19939-19948. [PMID: 39385452 DOI: 10.1021/acs.inorgchem.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Boron doping can effectively induce solid-state fluorescence (SSF) in carbon dots (CDs); however, research on the intrinsic mechanism underlying this phenomenon is lacking. Herein, a design strategy for boron-doped furan-based CDs is proposed, CDs with aggregation-induced emission (AIE) properties are synthesized, and the mechanism by which boron atom dopants induces SSF and room-temperature phosphorescence (RTP) is elucidated. The morphology and structural characterization of the CDs indicate that boron doping leads to structural twisting of the CDs. The AIE phenomenon of CDs arises from the inhibition of the twisted structure motions and a reduction in the nonradiative relaxation rate during the aggregation process. In addition, CDs with twisted structures exhibit a smaller overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), effectively reducing the singlet-triplet splitting energy (ΔEST). CDs embedded in microcrystalline cellulose (MCC) exhibit green RTP because the nonradiative transitions are suppressed, and the excited triplet species remain stable. For the first time, this study reveals the structure-activity relationship between the twisted structure and optical properties of CDs, providing a new approach for the preparation of solid-state light-emitting CDs.
Collapse
Affiliation(s)
- Tingxuan Guo
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Fulin Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
| | - Hui Gao
- Yunnan University of Chinese Medicine, University City of Chenggong, 1076, Yuhua Road, Kunming, Yunnan Province 650500, China
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, 300 Bailong Road, Kunming 650224, China
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, Yunnan Province 650224, China
| |
Collapse
|
6
|
Zhang Y, Huang X, Luo Y, Ma X, Luo L, Liang L, Deng T, Qiao Y, Ye F, Liao H. A carbon dot nanozyme hydrogel enhances pulp regeneration activity by regulating oxidative stress in dental pulpitis. J Nanobiotechnology 2024; 22:537. [PMID: 39227963 PMCID: PMC11373145 DOI: 10.1186/s12951-024-02810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Preserving pulp viability and promoting pulp regeneration in pulpitis have attracted widespread attention. Restricted by the oxidative stress microenvironment of dental pulpitis, excessive reactive oxygen and nitrogen species (RONS) trigger uncontrolled inflammation and exacerbate pulp tissue destruction. However, modulating redox homeostasis in inflamed pulp tissue to promote pulp regeneration remains a great challenge. Herein, this work proposes an effective antioxidative system (C-NZ/GelMA) consisting of carbon dot nanozymes (C-NZ) with gelatin methacryloyl (GelMA) to modulate the pulpitis microenvironment for dental pulp regeneration by utilizing the antioxidant properties of C-NZ and the mechanical support of an injectable GelMA hydrogel. This system effectively scavenges RONS to normalize intracellular redox homeostasis, relieving oxidative stress damage. Impressively, it can dramatically enhance the polarization of regenerative M2 macrophages. This study revealed that the C-NZ/GelMA hydrogel promoted pulp regeneration and dentin repair through its outstanding antioxidant, antiapoptotic, and anti-inflammatory effects, suggesting that the C-NZ/GelMA hydrogel is highly valuable for pulpitis treatment.
Collapse
Affiliation(s)
- Yingjuan Zhang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Xianxian Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Yicai Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Xiangyu Ma
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Ling Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry, Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Tingting Deng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Yang Qiao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry, Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China.
| | - Hongbing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China.
| |
Collapse
|
7
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
8
|
Jiang Y, Wu A, Yang L, Wu J, Liang Y, Hu Z, Wang Y. Composite hydrogels based on deep eutectic solvents and lysine for pressure sensors and adsorption of Fe 3. RSC Adv 2024; 14:25359-25368. [PMID: 39144368 PMCID: PMC11323740 DOI: 10.1039/d4ra04397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024] Open
Abstract
This study explored the preparation of a novel composite hydrogel based on deep eutectic solvent (DES) with lysine (Lys) and its application in pressure sensing and Fe3+ adsorption. DES was synthesized from acrylamide (AM) and urea (U) as hydrogen bond donors (HBD) with choline chloride (ChCl) as hydrogen bond acceptor (HBA), and Lys was used as a functional filler, and Lys/P(AM-U-ChCl) composite hydrogels were successfully prepared by frontal polymerization (FP) method. The structure of the hydrogels was characterized in depth using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The effects of Lys content on the mechanical properties, pH-responsive behavior, pressure-sensitive properties, and Fe3+ adsorption capacity of the hydrogels were further analyzed. It was found that the introduction of Lys significantly improved the compressive and pressure-sensitive properties of the hydrogels. The composite hydrogels exhibited excellent swelling equilibrium rates at different pH values. The capacitance change of the hydrogel with 0.5 wt% Lys at 200 g pressure was 2.12-fold higher than that of the hydrogel without Lys addition, and the adsorption efficiency of the hydrogel for Fe3+ was greatly enhanced. This study provides a new idea for the functionalized design of composite hydrogels and demonstrates their great application prospects in high-performance pressure sensors and heavy metal ion adsorption.
Collapse
Affiliation(s)
- Yajun Jiang
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Aolin Wu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Lin Yang
- School of Intelligent Manufacturing, Chongqing Institute of Engineering Chongqing 400056 China
| | - Jun Wu
- School of Mathematics, Physics and Optical Engineering, Hubei University of Automotive Technology Shiyan Hubei 442002 China
| | - Yue Liang
- School of Mathematics and Statistics, Hubei University of Education Wuhan Hubei 430205 China
| | - Zhigang Hu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Ying Wang
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| |
Collapse
|
9
|
Yu L, Liu H, Feng N, Yi G, Xin X, Hao J, Li H. Multi-Step and Switchable Energy Transfer in Photoluminescent Organosilicone Capsules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402565. [PMID: 38894600 PMCID: PMC11336914 DOI: 10.1002/advs.202402565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Indexed: 06/21/2024]
Abstract
Light-harvesting is of vital importance for many events, such as photosynthesis. To efficiently gather and transfer solar energy, delicate antenna is needed, which has been achieved by algae and plants. However, construction of efficient light-harvesting systems using multiple, artificial building blocks is still challenging. Here, blue-emitting organosilicone capsules containing carbon dots (denoted as CDs-Si) in ethanol are prepared, which can effectively transfer energy to green-emitting (silicone-functionalized bodipy, Si-BODIPY) or red-emitting (rhodamine b, RhB) dyes. In ternary system, sequential Förster resonance energy transfer from CDs-Si to Si-BODIPY and further to RhB is realized, which is accompanied with a less pronounced, parallel FRET directly from CDs-Si to RhB. The overall efficiency of energy transfer reaches ≈86%. By introducing a photoswitch (1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene, DAE) to the system, the emission becomes switchable under alternative illumination with UV and visible light, leading to the formation of smart artificial light-harvesting systems.
Collapse
Affiliation(s)
- Longyue Yu
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Hailong Liu
- Shandong Key Laboratory of Advanced Organosilicon Materials and TechnologiesZibo256401China
| | - Ning Feng
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Gang Yi
- Shandong Key Laboratory of Advanced Organosilicon Materials and TechnologiesZibo256401China
| | - Xia Xin
- National Engineering Research Center for Colloidal MaterialsShandong UniversityJinan250100China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100China
| |
Collapse
|
10
|
Wang M, Wang L, Hou A, Hong M, Li C, Yue Q. Portable sensing methods based on carbon dots for food analysis. J Food Sci 2024; 89:3935-3949. [PMID: 38865253 DOI: 10.1111/1750-3841.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Food analysis is significantly important in monitoring food quality and safety for human health. Traditional methods for food detection mainly rely on benchtop instruments and require a certain amount of analysis time, which promotes the development of portable sensors. Portable sensing methods own many advantages over traditional techniques such as flexibility and accessibility in diverse environments, real-time monitoring, cost-effectiveness, and rapid deployment. This review focuses on the portable approaches based on carbon dots (CDs) for food analysis. CDs are zero-dimensional carbon-based material with a size of less than 10 nm. In the manner of sensing, CDs exhibit rich functional groups, low biotoxicity, good biocompatibility, and excellent optical properties. Furthermore, there are many methods for the synthesis of CDs using various precursor materials. The incorporation of CDs into food science and engineering for enhancing food safety control and risk assessment shows promising prospects.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Lijun Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Aiying Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Zhao D, Liu H, Xu M, Yin C, Xiao X, Dai K. Functional carbon dots-hydrogel complex for selective antibacterial and detection applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124195. [PMID: 38547782 DOI: 10.1016/j.saa.2024.124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The carbon dots (CDs) with excellent optical properties and their hydrogel complex are of great significance in biomedicine, healthcare and biochemical detection fields. This paper reports the preparation of green-emitting CDs (MA-CDs) through one-step hydrothermal route with citric acid as reducing agent, L-malic acid as carbon source and N-(2-hydroxyethyl)ethylenediamine as nitrogen source. To expand its application in biology, MA-CDs were coupled with vancomycin to obtain multifunctional CDs (VMA-CDs). The prepared VMA-CDs exhibit selective antibacterial behavior to Gram-positive bacteria, and it could be used as a fluorescent probe to selectively label Staphylococcus aureus (S. aureus). Moreover, thanks to the excellent optical properties of VMA-CDs, it has been used as a fluorescent sensor to detect Au3+ with detection range of 6.50 nM-21.93 μM and detection limit 3.98 nM. By introducing the fluorescence of CDs as the reference signal, and VMA-CDs as a response signal, the hydrogel (V-SP) was prepared and realized the detection of Au3+ in microfluidics with assistance of a smartphone to collect and analyze data.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Chengxin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Kang Dai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| |
Collapse
|
12
|
Wei X, Wang X, Fu Y, Zhang X, Yan F. Emerging trends in CDs@hydrogels composites: from materials to applications. Mikrochim Acta 2024; 191:355. [PMID: 38809308 DOI: 10.1007/s00604-024-06411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Carbon dots (CDs) are nanoscale carbon materials with unique optical properties and biocompatibility. Their applications are limited by their tendency to aggregate or oxidize in aqueous environments. Turning weakness to strengths, CDs can be incorporated with hydrogels, which are three-dimensional networks of crosslinked polymers that can retain large amounts of water. Hydrogels can provide a stable and tunable matrix for CDs, enhancing their fluorescence, stability, and functionality. CDs@hydrogels, known for their ease of synthesis, strong binding capabilities, and rich surface functional groups, have emerged as promising composite materials. In this review, recent advances in the synthesis and characterization of CDs@hydrogels, composite materials composed of CDs and various types of natural or synthetic hydrogels, are summarized. The potential applications of CDs@hydrogels in fluorescence sensing, adsorption, drug delivery, antibacterial activity, flexible electronics, and energy storage are also highlighted. The current challenges and future prospects of CDs@hydrogels systems for the novel functional materials are discussed.
Collapse
Affiliation(s)
- Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Textiles Science and Engineering, Tiangong University, Tianjin, 300387, China
- Hebei Industrial Technology Research Institute of Membranes, Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Xueyu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiangyu Zhang
- The First Affiliated Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Traditional Chinese Medicine, Tianjin, 300381, China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, People's Republic of China.
- School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
13
|
Zhang G, Zhang Y, Wang J, Yu J, Wang K, Li G, Guan T. Nitrogen-functionalization of carbon materials for supercapacitor: Combining with nanostructure directly is superior to doping amorphous element. J Colloid Interface Sci 2024; 660:478-489. [PMID: 38246051 DOI: 10.1016/j.jcis.2024.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Just how heteroatomic functionalization enhances electrochemical capacity of carbon materials is a recent and widely studied field in scientific research. However, there is no consensus on whether combining with heteroatom-bearing nanostructures directly or doping amorphous elements is more advantageous. Herein, two kinds of porous carbon nanosheets were prepared from coal tar pitch through anchoring graphitic carbon nitride (PCNs/GCNs-5) or doping amorphous nitrogen element (PCNs/N). The structural characteristics and electrochemical properties of the two PCNs were revealed and compared carefully. It can be found that the amorphous nitrogen of PCNs/N will have a grievous impact on its carbon skeleton network, resulting in reduced stability in charge and discharge process, while the structural collapse of carbon network could be avoided in PCNs/GCNs-5 by the heteroatoms in the form of nanostructure. Particularly, PCNs/GCNs-5 exhibits extremely high specific capacity of 388 F g-1 at 1 A g-1, and splendid the capacitance retention rate of 98% after 10,000 cycles of charge and discharge, which are overmatch than the amorphous nitrogen doped carbon materials reported recently and PCNs/N. The combining strategy with nanostructure will inspire the design of carbon materials towards high-performance supercapacitor.
Collapse
Affiliation(s)
- Guoli Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Yi Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Jianlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Jiangyong Yu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Kaiying Wang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Gang Li
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Taotao Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
14
|
Wang Y, Guo R, Wang F, Wu Y, Sun X, Zhou S, Zhou J. Chiral Aggregation-Induced Emission Carbon Dot-Based Multicolor and Near-Infrared Circularly Polarized Delayed Fluorescence via a Light-Harvesting System. J Phys Chem Lett 2024; 15:2049-2056. [PMID: 38350644 DOI: 10.1021/acs.jpclett.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Circularly polarized luminescence (CPL) materials are the research frontier of chiral luminescence. As a kind of luminescent carbon material, carbon dots (CDs) are expected to become excellent candidates for the construction of CPL materials. However, the construction of CD-based circularly polarized afterglow emission, especially multicolor and near-infrared emission, remains a great challenge due to aggregation-caused quenching and the instability of triplet excitons. In this work, we synthesized chiral CDs with aggregation-induced emission using dithiosalicylic acid and l/d-arginine as precursors through a one-step solvothermal method. Notably, the CDs exhibit green delayed fluorescence (DF) in poly(vinyl alcohol) films. Furthermore, multicolor and near-infrared circularly polarized delayed fluorescence is successfully realized via engineering a chiral light-harvesting system in which the CDs with green DF emission act as energy donors and fluorescent dyes with emission colors ranging from yellow to the near infrared serve as energy acceptors.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yushuang Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
15
|
Gong X, Xu Q, Li J, Ma Y, Li X, Wu W, Wang H. Hydrophobic Mn-Doped Solid-State Red-Emitting Carbon Nanodots with AIE Effect and Their Hydrogel Composites for Color-Changing Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304673. [PMID: 37731094 DOI: 10.1002/smll.202304673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The aggregation-caused quenching has always limited the high concentration and solid-state applications of carbon nanodots. While the aggregation-induced emission effect, dominated by intramolecular motion, may be an effective means to solve this problem. Here, hydrophobic solid-state red-light carbon nanodots (M-CDs) with 95% yield are synthesized by a one-step hydrothermal method using 2,2'-dithiodibenzoic acid as the carbon source and manganese acetate as the dopant source. The disulfide bond of 2,2'-dithiodibenzoic acid serves as the symmetry center of molecular rotation and Mn catalyzes the synthesis of M-CDs, which promotes the formation of the central graphitic carbon structure. The M-CDs/agar hydrogel composites can achieve fluorescence transition behavior because of the special fluorescence transition properties of M-CDs. When this composite hydrogel is placed in water, water molecules contact with M-CDs through the network structure of the hydrogels, making the aggregated hydrogels of M-CDs fluorescence orange-red under 365 nm excitation. While in dimethyl sulfoxide, water molecules in the hydrogels network are replaced and the M-CDs fluoresce blue when dispersed, providing a potential application in information encryption. In addition, high-performance monochromatic light-emitting diode (LED) devices are prepared by compounding M-CDs with epoxy resin and coating them on 365 nm LED chips.
Collapse
Affiliation(s)
- Xiao Gong
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qingqing Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yan Ma
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiaoyan Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, P. R. China
| |
Collapse
|
16
|
Yin K, Zhang J, Xing P, Li H. Chiral Polymer Dots Show Unexpected Versatility of Highly Ordered Self-Assembly into Chiroptical Liquid Crystals, Ultra-Thin Films, and Long-Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302668. [PMID: 37150858 DOI: 10.1002/smll.202302668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Compared to the organic counterparts, chiral self-assembly of nanomaterials shows persistency to kinetic factors such as solvent environments, and consequently, dynamic modulation of self-assembly and functions remains major challenge. Here, it is shown that alkylated, chiral polymer dots (c-PDs) give highly ordered self-assemblies with amplified chirality adaptive to solvent environments, and one-to-many hierarchical aggregation can be realized. The c-PDs tended to self-assemble into nanohelices with cubic packing in the solid state, which, thanks to the thermo-responsiveness, transformed into thermic liquid crystals upon heating. Cotton effects and circularly polarized luminescence evidenced the chirality transfer from central chirality to supramolecular chirality. At the air-water interface, the c-PDs are self-assembled into monolayers, which further stack into multiple layers with chirality transfer and highly ordered packing. In addition, undergoing a good/poor solvent exchange, the c-PDs afforded ultra-long microribbons up to a length scale of millimeters, which are constituted by the bilayer lamellar stacking. The versatile chiral self-assembly modalities with long-range ordered packing arrays of carbonized c-PDs via solvent strategy are realized. This feature is comparable to the organic species, although the c-PDs have no atomic precise structures. This work would surely expand the applications of quantum dot ordered self-assembly with adaptiveness to kinetic factors.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Honguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
17
|
Du F, Yang LP, Wang LL. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. J Mater Chem B 2023; 11:8117-8135. [PMID: 37555267 DOI: 10.1039/d3tb01329d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, carbon dots (CDs) as newly developed carbon-based nanomaterials due to advantages such as excellent photostability and easy surface functionalization have generated wide application prospects in fields such as biological imaging and chemical sensing. The multicolor emission carbon dots (M-CDs) were acquired through the selection of different carbon source precursors, change of synthesis conditions and synthesis environment. Therefore, the aim of this review is to summarize the latest research progress in polychromatic CDs from the perspectives of synthesis strategies, luminescent mechanisms, luminescent properties and applications. This review focuses on how to prepare MCDs by changing raw materials and synthesis conditions such as reaction temperature, synthesis time, synthesis pH, and synthesis solvent. This review also presents the optical properties of MCDs, concentration effects, solvent effects, pH effects, elemental doping, and surface passivation on them, as well as their creative applications in the field of sensing applications. It is anticipated that this review will serve as a guide for the development of multifunctional M-CDs and inspire future research on controllable design and preparation of M-CDs.
Collapse
Affiliation(s)
- Fangfang Du
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Liu-Pan Yang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Li Wang
- Postdoctoral Research Station of Basic Medicine, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
18
|
Fu X, Ni Y, Wang G, Nie R, Wang Y, Yao R, Yan D, Guo M, Li N. Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing. Int J Nanomedicine 2023; 18:4663-4679. [PMID: 37605733 PMCID: PMC10440117 DOI: 10.2147/ijn.s418671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Background Multidrug-resistant staphylococcus aureus infected wounds can lead to nonhealing, systemic infections, and even death. Although advanced dressings are effective in protecting, disinfecting, and maintaining moist microenvironments, they often have limitations such as single functionality, inadequate drug release, poor biosafety, or high rates of drug resistance. Methods Here, a novel wound dressing comprising glycyrrhizic acid (GA) and tryptophan-sorbitol carbon quantum dots (WS-CQDs) was developed, which exhibit synergistic and long-lasting antibacterial and anti-inflammatory effects. We investigated the characterization, mechanical properties, synergistic antibacterial effects, sustained-release properties, and cytotoxicity of GA/WS-CQDs hydrogels in vitro. Additionally, we performed transcriptome sequence analysis to elucidate the antibacterial mechanism. Furthermore, we evaluated the biosafety, anti-inflammatory effects, and wound healing ability of GA/WS-CQDs dressings using an in vivo mouse model of methicillin-resistant staphylococcus aureus (MRSA)-infected wounds. Results The prepared GA/WS-CQDs hydrogels demonstrated superior anti-MRSA effects compared to common antibiotics in vitro. Furthermore, the sustained release of WS-CQDs from GA/WS-CQDs hydrogels lasted for up to 60 h, with a cumulative release of exceeding 90%. The sustained-released WS-CQDs exhibited excellent anti-MRSA effects, with low drug resistance attributed to DNA damage and inhibition of bacterial biofilm formation. Notably, in vivo experiments showed that GA/WS-CQDs dressings reduced the expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and significantly promoted the healing of MRSA-infected wounds with almost no systemic toxicity. Importantly, the dressings did not require replacement during the treatment process. Conclusion These findings emphasize the high suitability of GA/WS-CQDs dressings for MRSA-infected wound healing and their potential for clinical translation.
Collapse
Affiliation(s)
- Xiangjie Fu
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People’s Republic of China
| | - Guanchen Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Runda Nie
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Yang Wang
- Institute of Integrative Medicine, Key Laboratory of Hunan Province for Liver Manifestation of Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Run Yao
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Danyang Yan
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Mingming Guo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Ning Li
- Department of Blood Transfusion, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| |
Collapse
|
19
|
Zhou S, Wang F, Feng N, Xu A, Sun X, Zhou J, Li H. Room Temperature Phosphorescence Carbon Dots: Preparations, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301240. [PMID: 37086135 DOI: 10.1002/smll.202301240] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Room temperature phosphorescence (RTP) materials have drawn considerable attention by virtue of their outstanding features. Compared with organometallic complexes and pure organic compounds, carbon dots (CDs) have emerged as a new type of RTP materials, which show great advantages, such as moderate reaction condition, low toxicity, low cost, and tunable optical properties. In this review, the important progress made in RTP CDs is summarized, with an emphasis on the latest developments. The synthetic strategies of RTP CDs will be comprehensively summarized, followed by detailed introduction of their performance regulation and potential applications in anti-counterfeiting, information encryption, sensing, light-emitting diodes, and biomedicine. Finally, the remaining major challenges for RTP CDs are discussed and new opportunities in the future are proposed.
Collapse
Affiliation(s)
- Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Feixiang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aoxue Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|