1
|
Xu L, Xie Y, Liu A, Xie L, Miao X, Hou Z, Xiang L, Jiang T, Wu A, Lin J. Innovative Applications and Perspectives of Surface-Enhanced Raman Spectroscopy Technology in Biomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409698. [PMID: 39610172 DOI: 10.1002/smll.202409698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a revolutionary technique in the biomedical field, providing unparalleled sensitivity for the detection and characterization of biological samples. In this review, recent SERS innovations are comprehensively discussed, including advanced substrate materials, different SERS detection strategies, and multimodal approaches that combine SERS with other biotechnologies. Among them, the role of SERS in the accurate diagnosis of tumors is highlighted, which has promoted accurate molecular analysis and real-time monitoring of treatment effects. In addition, the growing potential of SERS in the treatment of chronic diseases such as cardiovascular disease, diabetes, and neurodegenerative diseases is discussed. Moreover, the integration with microfluidic chip systems for precise single-cell analysis is presented. To give a forward-looking view, the key challenges faced by SERS technology are also proposed, and possible solutions to overcome these obstacles are provided.
Collapse
Affiliation(s)
- Lei Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Aochi Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xinyu Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhiwei Hou
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Lingchao Xiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| |
Collapse
|
2
|
Bahlol HS, Li J, Deng J, Foda MF, Han H. Recent Progress in Nanomaterial-Based Surface-Enhanced Raman Spectroscopy for Food Safety Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1750. [PMID: 39513830 PMCID: PMC11547707 DOI: 10.3390/nano14211750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Food safety has recently become a widespread concern among consumers. Surface-enhanced Raman scattering (SERS) is a rapidly developing novel spectroscopic analysis technique with high sensitivity, an ability to provide molecular fingerprint spectra, and resistance to photobleaching, offering broad application prospects in rapid trace detection. With the interdisciplinary development of nanomaterials and biotechnology, the detection performance of SERS biosensors has improved significantly. This review describes the advantages of nanomaterial-based SERS detection technology and SERS's latest applications in the detection of biological and chemical contaminants, the identification of foodborne pathogens, the authentication and quality control of food, and the safety assessment of food packaging materials. Finally, the challenges and prospects of constructing and applying nanomaterial-based SERS sensing platforms in the field of food safety detection are discussed with the aim of early detection and ultimate control of foodborne diseases.
Collapse
Affiliation(s)
- Hagar S. Bahlol
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Jiawen Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Jiamin Deng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| | - Mohamed F. Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China; (H.S.B.); (J.L.); (J.D.)
| |
Collapse
|
3
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
4
|
Tao G, Li J, Mu Y, Zhang X. A Three-Dimensional Hydrophobic Surface-Enhanced Raman Scattering Sensor via a Silver-Coated Polytetrafluoroethylene Membrane for the Direct Trace Detection of Molecules in Water. BIOSENSORS 2024; 14:88. [PMID: 38392007 PMCID: PMC10886991 DOI: 10.3390/bios14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
We report a three-dimensional (3D) SERS substrate consisting of a silver nanoparticle (AgNP) coating on the skeleton-fiber surfaces of a polytetrafluoroethylene (PTFE) membrane. Simple thermal evaporation was employed to deposit Ag onto the PTFE membrane to produce grape-shaped AgNPs. The 3D-distributed AgNPs exhibit not only strong localized surface plasmon resonance (LSPR) but also strong hydrophobic performance. High-density hotspots via silver nano-grape structures and nanogaps, the large 3D interaction volume, and the large total surface area, in combination with the hydrophobic enrichment of the specimen, facilitate high-sensitivity sensing performance of such a SERS substrate for the direct detection of low-concentration molecules in water. An enhancement factor of up to 1.97 × 1010 was achieved in the direct detection of R6G molecules in water with a concentration of 10-13 mol/L. The lowest detection limit of 100 ppt was reached in the detection of melamine in water. Such a SERS sensor may have potential applications in food-safety control, environmental water pollution monitoring, and biomedical analysis.
Collapse
Affiliation(s)
- Guanwei Tao
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiajun Li
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yunyun Mu
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Bi X, Lin L, Chen Z, Ye J. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy. SMALL METHODS 2024; 8:e2301243. [PMID: 37888799 DOI: 10.1002/smtd.202301243] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS), well acknowledged as a fingerprinting and sensitive analytical technique, has exerted high applicational value in a broad range of fields including biomedicine, environmental protection, food safety among the others. In the endless pursuit of ever-sensitive, robust, and comprehensive sensing and imaging, advancements keep emerging in the whole pipeline of SERS, from the design of SERS substrates and reporter molecules, synthetic route planning, instrument refinement, to data preprocessing and analysis methods. Artificial intelligence (AI), which is created to imitate and eventually exceed human behaviors, has exhibited its power in learning high-level representations and recognizing complicated patterns with exceptional automaticity. Therefore, facing up with the intertwining influential factors and explosive data size, AI has been increasingly leveraged in all the above-mentioned aspects in SERS, presenting elite efficiency in accelerating systematic optimization and deepening understanding about the fundamental physics and spectral data, which far transcends human labors and conventional computations. In this review, the recent progresses in SERS are summarized through the integration of AI, and new insights of the challenges and perspectives are provided in aim to better gear SERS toward the fast track.
Collapse
Affiliation(s)
- Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Li Lin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
6
|
Wang Q, Li S, Chen J, Yang L, Qiu Y, Du Q, Wang C, Teng M, Wang T, Dong Y. A novel strategy for therapeutic drug monitoring: application of biosensors to quantify antimicrobials in biological matrices. J Antimicrob Chemother 2023; 78:2612-2629. [PMID: 37791382 DOI: 10.1093/jac/dkad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Over the past few years, therapeutic drug monitoring (TDM) has gained practical significance in antimicrobial precision therapy. Yet two categories of mainstream TDM techniques (chromatographic analysis and immunoassays) that are widely adopted nowadays retain certain inherent limitations. The use of biosensors, an innovative strategy for rapid evaluation of antimicrobial concentrations in biological samples, enables the implementation of point-of-care testing (POCT) and continuous monitoring, which may circumvent the constraints of conventional TDM and provide strong technological support for individualized antimicrobial treatment. This comprehensive review summarizes the investigations that have harnessed biosensors to detect antimicrobial drugs in biological matrices, provides insights into the performance and characteristics of each sensing form, and explores the feasibility of translating them into clinical practice. Furthermore, the future trends and obstacles to achieving POCT and continuous monitoring are discussed. More efforts are necessary to address the four key 'appropriateness' challenges to deploy biosensors in clinical practice, paving the way for personalized antimicrobial stewardship.
Collapse
Affiliation(s)
- Quanfang Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihan Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Luting Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|