1
|
Xiao T, Yang Y, Zhang C, Li Y, Zhang Q, Ma Z, Xiang Q, Wu J, Wang J, Wang X, Lu C, Ma X. Self-sacrificing template-derived N/O-doped porous carbons: Exceptional capacitor performance across environmental extremes. J Colloid Interface Sci 2025; 688:411-420. [PMID: 40020480 DOI: 10.1016/j.jcis.2025.02.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Heteroatom-doped porous carbon exhibit promising potential as supercapacitor electrodes, but the tradeoff between specific surface area (SSA) and heteroatom-doped level limits its excellent performance. In this work, the activation coupled with doping strategy to synthesize the pitch-based porous carbon (PPC). Different from single activation method to prepare microporous carbon, the PPC prepared by the coupling method has a hierarchical porous structure and high SSA (2020 m2/g). Melamine acts as a self-sacrificing template, simultaneously realizing N and O dopings and cooperating with KOH to form hierarchical micro-mesopores, which enhance outstanding hydrophilicity. Attributed to the synergistic effect of activation mechanism and doping, PPC shows compatibility of different electrolyte systems and excellent high loading characteristics (220 F/g at 10 mg cm-2). In addition, the capacitance fluctuation is very small in extreme cases (0 to -40 °C), reflecting the excellent low-temperature performance. Therefore, the porous carbon prepared by the coupling method has a good micro-mesoporous structure and excellent electrochemical properties, which provides a new perspective for the high value-added utilization of low-cost pitch in supercapacitors.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yin Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chen Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yulong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Zhuang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qiankun Xiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Jie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Jian Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xiaofeng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chun Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xinlong Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Jiangsu Yuebei Technology Co., LTD, China.
| |
Collapse
|
2
|
Shah SS, Shaikh MN, Rahman T, Shams I, Alfasane A, Rahman SM, Raihan A, Nayem SMA, Aziz A. Albizia Procera-Derived Nitrogen-Doped Carbon: A Versatile Material for Energy Conversion, Storage, and Environmental Applications. Chem Asian J 2025; 20:e202401362. [PMID: 39745010 DOI: 10.1002/asia.202401362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/14/2024] [Indexed: 01/14/2025]
Abstract
This review explores the diverse applications of nitrogen-doped carbon derived from Albizia procera, known as white siris. Native to the Indian subcontinent and tropical Asia, this species thrives in varied conditions, contributing to sustainable development. The nitrogen-rich leaves of Albizia procera are an excellent source for synthesizing nitrogen-doped carbon, which possesses remarkable properties for advanced technologies. This material demonstrates significant potential in energy conversion and storage systems, such as supercapacitors and batteries, due to its high surface area, electrical conductivity, and chemical stability. Nitrogen doping introduces active sites that enhance charge storage, making it ideal for renewable energy applications. Additionally, this material shows promise in environmental processes like water splitting and carbon dioxide capture, where its porous structure and chemical functionality enable efficient adsorption and remediation. The review discusses synthesis methodologies, including pyrolysis and activation, to optimize its properties for energy and environmental uses. Nitrogen-doped carbon derived from Albizia procera may expand into catalytic applications, enhancing its role in sustainable technologies. This review underscores the importance of utilizing natural resources like Albizia procera to develop materials that drive both environmental sustainability and technological innovation.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Socio-Environmental Energy Science Department, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Tanzilur Rahman
- Department of Bioengineering, College of Chemicals and Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Iftekhar Shams
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | | | - Syed Masiur Rahman
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Asif Raihan
- Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Afridi AM, Aktary M, Shaheen Shah S, Mitu Sheikh SI, Jahirul Islam G, Nasiruzzaman Shaikh M, Abdul Aziz M. Advancing Electrical Engineering with Biomass-derived Carbon Materials: Applications, Innovations, and Future Directions. CHEM REC 2024; 24:e202400144. [PMID: 39529417 DOI: 10.1002/tcr.202400144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Indexed: 11/16/2024]
Abstract
The ongoing global shift towards sustainability in electrical engineering necessitates novel materials that offer both ecological and technical benefits. Biomass-derived carbon materials (BCMs) are emerging as cornerstones in this transition due to their sustainability, cost-effectiveness, and versatile properties. This review explores the expansive role of BCMs across various electrical engineering applications, emphasizing their transformative impact and potential in fostering a sustainable technological ecosystem. The fundamentals of BCMs are investigated, including their unique structures, diverse synthesis procedures, and significant electrical and electrochemical properties. A detailed examination of recent innovations in BCM applications for energy storage, such as batteries and supercapacitors, and their pivotal role in developing advanced electronic components like sensors, detectors, and electromagnetic interference shielding composites has been covered. BCMs offer superior electrical conductivities, tunable surface chemistries, and mechanical properties compared to traditional carbon sources. These can be further enhanced through innovative doping and functionalization techniques. Moreover, this review identifies challenges related to scalability and uniformity in properties and proposes future research directions to overcome these hurdles. By integrating insights from recent studies with a forward-looking perspective, this paper sets the stage for the next generation of electrical engineering solutions powered by biomass-derived materials, aligning technological advancement with environmental stewardship.
Collapse
Affiliation(s)
- Al Mojahid Afridi
- Department of Physics, Jashore University of Science and Technology, Bangladesh
| | - Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Sharif Iqbal Mitu Sheikh
- Department of Electrical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | | | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Al-Qwairi FO, Shaheen Shah S, Shabi AH, Khan A, Aziz MA. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem Asian J 2024; 19:e202400314. [PMID: 39014972 DOI: 10.1002/asia.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Stainless steel mesh (SSM) has emerged as a cornerstone in electrochemical applications owing to its exemplary versatility, electrical conductivity, mechanical robustness, and corrosion resistance. This state-of-the-art review delves into the diverse roles of SSM across a spectrum of electrochemical domains, including energy conversion and storage devices, water treatment technologies, electrochemical sensors, and catalysis. We meticulously explore its deployment in supercapacitors, batteries, and fuel cells, highlighting its utility as a current collector, electrode, and separator. The review further discusses the critical significance of SSM in water treatment processes, emphasizing its efficacy in supporting membranes and facilitating electrocoagulation, as well as its novel uses in electrochemical sensing and catalysis, which include electrosynthesis and bioelectrochemistry. Each section delineates the recent advancements, identifies the inherent challenges, and suggests future directions for leveraging SSM in electrochemical technologies. This comprehensive review showcases the current state of knowledge and articulates the novel integration of SSM with emerging materials and technologies, thereby establishing a new paradigm for sustainable and efficient electrochemical applications. Through critical analysis and insightful recommendations, this review positions itself as a seminal contribution, paving the way for researchers and practitioners to harness the full potential of SSM in advancing the electrochemistry frontiers.
Collapse
Affiliation(s)
- Fatima Omar Al-Qwairi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Hakeem AS, Wójcik NA, Wolff S, Ali S. Evaluating the impact of ZnO doping on electrical and thermal properties of calcium-aluminosilicate oxynitride glass-ceramics. CERAMICS INTERNATIONAL 2024; 50:37665-37675. [DOI: 10.1016/j.ceramint.2024.07.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Abbas Dalhatu A, Faisal Al-Betar AR, Dahiru A, Shaheen Shah S, Abdul Aziz M. Optimizing Electrodeposition of Polyaniline on Various Woven Steel Mesh Sizes for Enhanced Supercapacitor Performance. Chem Asian J 2024; 19:e202400341. [PMID: 38923319 DOI: 10.1002/asia.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The development of efficient supercapacitors hinges on the innovation of superior electrodes, which are pivotal in augmenting their energy storage capabilities. Supercapacitors, recognized for their high-power density and extended cycle life, play a crucial role as sustainable solutions in addressing energy storage challenges. A fundamental aspect of supercapacitor functionality involves the electrode material, which works in concert with other key components such as the current collector, separator, and electrolyte. This study focuses on evaluating the impact of the current collector material on the performance of symmetric supercapacitors. We investigated the electropolymerization of polyaniline on woven steel mesh current collectors of varying mesh sizes, ranging from 20 to 200 mesh per inch, using assorted deposition conditions. The electrochemically modified woven steel meshes were utilized to construct symmetric supercapacitors. The electrochemical performance of the assembled supercapacitors, configured in a two-electrode system, was investigated using a variety of electrochemical techniques to better understand the kinetics of electrolyte ion migration. Notably, the 20-mesh size, characterized by the fewest pores per inch, demonstrated superior performance with an optimum capacitance of 4730 mF/cm2, an energy density of 317.8 μWh/cm2, and a power density of 400 μW/cm2 at a current density of 1 mA/cm2.
Collapse
Affiliation(s)
- Ahmad Abbas Dalhatu
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdul-Rahman Faisal Al-Betar
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Dahiru
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Akter R, Shah SS, Ehsan MA, Shaikh MN, Zahir MH, Aziz MA, Ahammad AJS. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy. Chem Asian J 2024; 19:e202300797. [PMID: 37812018 DOI: 10.1002/asia.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
Ammonia (NH3), a cornerstone in the chemical industry, has historically been pivotal for producing various valuable products, notably fertilizers. Its significance is further underscored in the modern energy landscape, where NH3 is seen as a promising medium for hydrogen storage and transportation. However, the conventional Haber-Bosch process, which accounts for approximately 170 million ton of NH3 produced globally each year, is energy-intensive and environmentally damaging. The electrochemical nitrogen reduction reaction (NRR) emerges as a sustainable alternative that operates in ambient conditions and uses renewable energy sources. Despite its potential, the NRR faces challenges, including the inherent stability of nitrogen and its competition with the hydrogen evolution reaction. Transition metals, especially ruthenium (Ru) and molybdenum (Mo), have demonstrated promise as catalysts, enhancing the efficiency of the NRR. Ru excels in catalytic activity, while Mo offers robustness. Strategies like heteroatom doping are being pursued to mitigate NRR challenges, especially the competing hydrogen evolution reaction. This review delves into the advancements of Ru and Mo-based catalysts for electrochemical ammonia synthesis, elucidating the NRR mechanisms, and championing the transition towards a greener ammonia economy. It also seeks to elucidate the core principles underpinning the NRR mechanism. This shift aims not only to address challenges inherent to traditional production methods but also to align with the overarching goals of global sustainability.
Collapse
Affiliation(s)
- Riva Akter
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
8
|
Ferdous AR, Shah SS, Shaikh MN, Barai HR, Marwat MA, Oyama M, Aziz MA. Advancements in Biomass-Derived Activated Carbon for Sustainable Hydrogen Storage: A Comprehensive Review. Chem Asian J 2024; 19:e202300780. [PMID: 37811920 DOI: 10.1002/asia.202300780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
The increasing global energy demand, which is being driven by population growth and urbanization, necessitates the exploration of sustainable energy sources. While traditional energy generation predominantly relies on fossil fuels, it also contributes to alarming CO2 emissions. Hydrogen has emerged as a promising alternative energy carrier with its zero-carbon emission profile. However, effective hydrogen storage remains a challenge. When exposed to hydrogen, conventional metallic vessels, once considered to be the primary hydrogen carriers, are prone to brittleness-induced cracking. This has spurred interest in alternative storage solutions, particularly porous materials like metal-organic frameworks and activated carbon (AC). Among these, biomass-derived AC stands out for its eco-friendly nature, cost-effectiveness, and optimal adsorption properties. This review offers a comprehensive overview of recent advancements in the synthesis, characterization, and hydrogen storage capabilities of AC. The unique benefits of biomass-derived sources are highlighted, as is the pivotal role of chemical and physical activation processes. Furthermore, we identify existing challenges and propose future research directions in AC-based hydrogen storage. This compilation aims to serve as a foundation for potential innovations in sustainable hydrogen storage solutions.
Collapse
Affiliation(s)
- Ar Rafi Ferdous
- Department of Petroleum and Mining Engineering, Chittagong University of Engineering and Technology, Chittagong, 4349, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Korea
| | - Mohsin Ali Marwat
- Department of Materials Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23640, Khyber Pakhtunkhwa, Pakistan
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
9
|
Wang X, Chen Y, Wu C. Higher specific capacitance and compressibility nanocellulose based supercapacitor hydrogel electrode assembled by efficient impregnation. Int J Biol Macromol 2024; 267:131463. [PMID: 38599418 DOI: 10.1016/j.ijbiomac.2024.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The rational and effective combination of different electrochemical substances to prepare high-performance supercapacitor electrodes has been widely studied by researchers. Currently, most work focuses on polymerizing conductive polymers onto the surface of nanocellulose and carbon materials, and then preparing them into supercapacitor electrodes. This method is effective, but the process is cumbersome. Therefore, we propose a simpler and more effective method. A hydrogel was prepared by using TEMPO oxidized cellulose nanofibers (TOCNF)/multi walled carbon nanotubes (MWCNT), and then immersed in aniline and FeCI3 solutions for 24 h to obtain a hydrogel electrode. At a current density of 0.5 mA cm-2, it exhibits an area specific capacitance of 1028 mF cm-2, with a maximum strain of 58 % and a compressive stress of 150 KPa. The assembled symmetrical supercapacitor exhibits a high specific capacitance of 303 mF cm-2 at a current density of 0.5 mA cm-2. The research results indicate that the proposed method is a new feasible approach for developing supercapacitors.
Collapse
Affiliation(s)
- Xingwang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China.
| |
Collapse
|
10
|
Yu T, Li S, Li F, Zhang L, Wang Y, Sun J. In-situ synthesized and induced vertical growth of cobalt vanadium layered double hydroxide on few-layered V 2CT x MXene for high energy density supercapacitors. J Colloid Interface Sci 2024; 661:460-471. [PMID: 38308886 DOI: 10.1016/j.jcis.2024.01.206] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Two-dimensional (2D) MXene nanomaterials display great potential for green energy storage. However, as a result of self-stacking of MXene nanosheets and the presence of conventional binders, MXene-based nanomaterials are significantly hindered in their rate capability and cycling stability. We successfully constructed a self-supported stereo-structured composite (TMA-V2CTx/CoV-LDH/NF) by in-situ growing 2D cobalt vanadium layered double hydroxide (CoV-LDH) vertically on 2D few-layered V2CTx MXene nanosheets and interconnecting it with Ni foam (NF) with a self-supported structure to act as a binder-free electrode. In addition to inhibiting CoV-LDH aggregation, the highly conductive V2CTx MXene and CoV-LDH work synergistically to improve charge storage. The specific capacitance of the TMA-V2CTx/CoV-LDH/NF electrode is 2374 F/g (1187 C/g) at 1 A/g. At the same time, the TMA-V2CTx/CoV-LDH/NF exhibits excellent stability, retaining 85.3 % of its specific capacitance at 20 A/g after 10,000 cycles. In addition, the hybrid supercapacitor (HSC) is assembled based on positive electrode (TMA-V2CTx/CoV-LDH/NF) and negative electrode (AC), achieving the maximum energy density of 74.4 Wh kg-1 at 750.3 W kg-1. TMA-V2CTx/CoV-LDH/NF has potential as an electrode material for storing green energy. The research strategy provides a development prospect for the construction of novel V2CTx MXene-based electrode material with self-supported structures.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Yuping Wang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jingyu Sun
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
11
|
Shah SS, Aziz MA, Ali M, Hakeem AS, Yamani ZH. Advanced High-Energy All-Solid-State Hybrid Supercapacitor with Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306665. [PMID: 38150613 DOI: 10.1002/smll.202306665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/14/2023] [Indexed: 12/29/2023]
Abstract
Developing efficient, lightweight, and durable all-solid-state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two-step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC-2 material with a high yield (≈24%) and specific surface area (≈2600 m2 g-1). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH-1@JAC-2) by integrating JAC nanosheets with nickel-cobalt-layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC-2 as the negative electrode material in all-solid-state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g-1, a specific capacity of 209 mAh g-1 (at 0.5 A g-1), and an energy density of 100 Wh kg-1 (at 250 W kg-1) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large-scale production of transition metal-based layered double hydroxides.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
12
|
Cui X, Yang X, Liu Z, Jiang W, Wan J, Liu Y, Ma F. Construction of CoNi 2S 4/Co 9S 8@Co 4S 3 nanocubes derived from Ni-Co prussian blue analogues@cobalt carbonate hydroxide core-shell heterostructure for asymmetric supercapacitor. J Colloid Interface Sci 2024; 661:614-628. [PMID: 38310770 DOI: 10.1016/j.jcis.2024.01.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Construction of Prussian blue analogues (PBAs) with heterostructure is beneficial to preparing PBAs derivatives with superior electrochemical performance. In this work, the core-shell nanostructured nanocubes composed of nickel hexacyanocobalt PBA (NiCo-PBA)@cobalt carbonate hydroxide (CCH) are synthesized through an in-situ epitaxial growth strategy, and the formation mechanisms of coating are carefully validated and specifically discussed. Then, the precursors are successfully transformed into hierarchical CoNi2S4/Co9S8@Co4S3 via the gas-phase vulcanization method. Benefiting from the intriguing heterostructure and multicomponent sulfides, the CoNi2S4/Co9S8@Co4S3-80 electrode exhibits a high specific capacity of 799 ± 16C/g (specific capacitance of 1595 ± 31F/g) at 1 A/g, ultra-high capacity retention of 80 % at a high current density of 20 A/g. The assembled asymmetric supercapacitor (ASC) device delivers a high energy density of 43.3 Wh kg-1 at a power density of 899 W kg-1 and exhibits superior cycling stability with the capacity retention of 88 % after 5,000 cycles. Subsequently, the fabricated all-solid-state ASC device shows an excellent energy density of 36.4 Wh kg-1 with a power density of 824 W kg-1. This work proposing rational design of combining multicomponent sulfides and core-shell heterostructure based on PBA nanocubes opens up a novel route for developing asymmetric supercapacitor electrode materials with superior performance.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoyang Yang
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Zeyi Liu
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Wei Jiang
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Jiafeng Wan
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Yifu Liu
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Fangwei Ma
- Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion (College of Heilongjiang Province), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
13
|
Ferdous AR, Shah SS, Shah SNA, Johan BA, Al Bari MA, Aziz MA. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage. Molecules 2024; 29:2081. [PMID: 38731570 PMCID: PMC11085522 DOI: 10.3390/molecules29092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This comprehensive review addresses the need for sustainable and efficient energy storage technologies against escalating global energy demand and environmental concerns. It explores the innovative utilization of waste materials from oil refineries and coal processing industries as precursors for carbon-based electrodes in next-generation energy storage systems, including batteries and supercapacitors. These waste-derived carbon materials, such as semi-coke, coal gasification fine ash, coal tar pitch, petroleum coke, and petroleum vacuum residue, offer a promising alternative to conventional electrode materials. They present an optimal balance of high carbon content and enhanced electrochemical properties while promoting environmental sustainability through effectively repurposing waste materials from coal and hydrocarbon industries. This review systematically examines recent advancements in fabricating and applying waste-derived carbon-based electrodes. It delves into the methodologies for converting industrial by-products into high-quality carbon electrodes, with a particular emphasis on carbonization and activation processes tailored to enhance the electrochemical performance of the derived materials. Key findings indicate that while higher carbonization temperatures may impede the development of a porous structure, using KOH as an activating agent has proven effective in developing mesoporous structures conducive to ion transport and storage. Moreover, incorporating heteroatom doping (with elements such as sulfur, potassium, and nitrogen) has shown promise in enhancing surface interactions and facilitating the diffusion process through increased availability of active sites, thereby demonstrating the potential for improved storage capabilities. The electrochemical performance of these waste-derived carbon materials is evaluated across various configurations and electrolytes. Challenges and future directions are identified, highlighting the need for a deeper understanding of the microstructural characteristics that influence electrochemical performance and advocating for interdisciplinary research to achieve precise control over material properties. This review contributes to advancing electrode material technology and promotes environmental sustainability by repurposing industrial waste into valuable resources for energy storage. It underscores the potential of waste-derived carbon materials in sustainably meeting global energy storage demands.
Collapse
Affiliation(s)
- Ar Rafi Ferdous
- Department of Petroleum and Mining Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh;
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Syed Niaz Ali Shah
- Innovation and Technology Transfer, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Md Abdullah Al Bari
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran 31261, Saudi Arabia
| |
Collapse
|
14
|
Zhang Q, Wang S, Lan Y, Deng J, Fan M, Du G, Zhao W. Enhancing supercapacitor electrochemical performance through acetate-ion intercalation in layered nickel-cobalt double hydroxides. J Colloid Interface Sci 2024; 660:597-607. [PMID: 38266341 DOI: 10.1016/j.jcis.2024.01.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Enhancing the performance of layered nickel-cobalt double hydroxides (NiCo-LDH) as electrode materials for supercapacitors represents a promising strategy for optimizing energy storage systems. However, the complexity of the preparation method for electrode materials with enhanced electrochemical performance and the inherent defects of nickel-cobalt LDH remain formidable challenges. In this study, we synthesized acetate-ion-intercalated NiCo-LDH (NCLA) through a simple one-step hydrothermal method. The physical and chemical structural properties and supercapacitor characteristics of the as-prepared NCLA were systematically characterized. The results indicated that the introduction of Ac- engendered a distinctive tetragonal crystal structure in NiCo-LDH, concomitant with a reduced interlayer spacing, thus enhancing structural stability. Electrochemical measurements revealed that NCLA-8 exhibited a specific capacitance of 1032.2 F g-1 at a current density of 1 A g-1 and a high specific capacitance of 922 F g-1 at 10 A g-1, demonstrating a rate performance of 89.3%. Furthermore, NCLA-8 was used to construct the positive electrode of an asymmetric supercapacitor, while the negative electrode was composed of activated carbon. This configuration resulted in an energy density of 67.7 Wh kg-1 at a power density of 800 W kg-1. Remarkably, the asymmetric supercapacitor retained 82.8% of its initial capacitance following 3000 charge-discharge cycles at a current density of 10 A g-1. Thus, this study demonstrates the efficacy of acetate-ion intercalation in enhancing the electrochemical performance of NiCo-LDH, establishing it as a viable electrode material for supercapacitors.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Shirui Wang
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China; College of Materials Science, Chang'an University, South Second Ring Road West Section, Xi'an, Shaanxi 710064, People's Republic of China
| | - Yuling Lan
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Jianping Deng
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China
| | - Mizi Fan
- College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, London, UK
| | - Guanben Du
- International Joint Research Center for Biomass Materials, Southwest Forestry University, 300 Bailongsi, Kunming 650224, People's Republic of China.
| | - Weigang Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, 63 Xiyuangong Road, Fuzhou 350002, People's Republic of China; International Joint Research Center for Biomass Materials, Southwest Forestry University, 300 Bailongsi, Kunming 650224, People's Republic of China.
| |
Collapse
|
15
|
Xu Y, Yu S, Johnson HM, Wu Y, Liu X, Fang B, Zhang Y. Recent progress in electrode materials for micro-supercapacitors. iScience 2024; 27:108786. [PMID: 38322999 PMCID: PMC10845924 DOI: 10.1016/j.isci.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Micro-supercapacitors (MSCs) stand out in the field of micro energy storage devices due to their high power density, long cycle life, and environmental friendliness. The key to improving the electrochemical performance of MSCs is the selection of appropriate electrode materials. To date, both the composition and structure of electrode materials in MSCs have become a hot research topic, and it is urgent to compose a review to highlight the most important research achievements, major challenges, opportunities, and encouraging perspectives in this field. In this review, research background of MSCs is first reviewed followed by their working principles, structural classifications, and physiochemical and electrochemical characterization techniques. Next, various materials and preparation methods are summarized, and the relationship between the MSC performance and structure and composition of materials are discussed in depth. Finally, this review provides a comprehensive suggestion on accelerating the development of electrode materials to facilitate the commercialization of MSCs.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hannah M. Johnson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| | - Baizeng Fang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China
| |
Collapse
|
16
|
Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. CHEM REC 2024; 24:e202300216. [PMID: 37651034 DOI: 10.1002/tcr.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
Collapse
Affiliation(s)
- Protity Saha
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
- present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216, Bnagladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
17
|
Shaheen Shah S, Oladepo S, Ali Ehsan M, Iali W, Alenaizan A, Nahid Siddiqui M, Oyama M, Al-Betar AR, Aziz MA. Recent Progress in Polyaniline and its Composites for Supercapacitors. CHEM REC 2024; 24:e202300105. [PMID: 37222655 DOI: 10.1002/tcr.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Sulayman Oladepo
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Wissam Iali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Asem Alenaizan
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Nahid Siddiqui
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Abdul-Rahman Al-Betar
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
18
|
Yu H, Long Y, Chen D, Dong X, Ye X, Zhang Y, Li F, Xu Y, Tao Y, Yang QH. Proton is Essential or Not: A Fresh Look on Pseudocapacitive Energy Storage of PANI Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303832. [PMID: 37670542 DOI: 10.1002/smll.202303832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Indexed: 09/07/2023]
Abstract
Protonation has been considered essential for the pseudocapacitive energy storage of polyaniline (PANI) for years, as proton doping in PANI chains not only activates electron transport pathways, but also promotes the proceeding of redox reactions. Rarely has the ability for PANI of storing energy without protonation been investigated, and it remains uncertain whether PANI has pseudocapacitive charge storage properties in an alkaline electrolyte. Here, this work first demonstrates the pseudocapacitive energy storage for PANI without protonation using a PANI/graphene composite as a model material in an alkaline electrolyte. Using in situ Raman spectroscopy coupled with electrochemical quartz crystal microbalance (EQCM) measurements, this work determines the formation of -N= group over potential on a PANI chain and demonstrates the direct contribution of OH- in the nonprotonation type of oxidation reactions. This work finds that the PANI/graphene composite in an alkaline electrolyte has excellent cycling stability with a wider operation voltage of 1 V as well as a slightly higher specific capacitance than that in an acidic electrolyte. The findings provide a new perspective on pseudocapacitive energy storage of PANI-based composites, which will influence the selection of electrolytes for PANI materials and expand their application in energy storage fields.
Collapse
Affiliation(s)
- Hongyuan Yu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Long
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Derong Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ximan Dong
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiaolin Ye
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yibo Zhang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Fangbing Li
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yue Xu
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Ying Tao
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Quan-Hong Yang
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
19
|
Johan BA, Ali S, Shuaibu AD, Shah SS, Alzahrani AS, Aziz MA. Metal Negatrode Supercapatteries: Advancements, Challenges, and Future Perspectives for High-Performance Energy Storage. CHEM REC 2024; 24:e202300239. [PMID: 38050957 DOI: 10.1002/tcr.202300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Metal negatrode supercapattery (MNSC) is an emerging technology that combines the high energy storage capabilities of batteries with the high-power delivery of supercapacitors, thereby offering promising solutions for various applications, such as energy storage systems, electric vehicles, and portable electronics. This review article presents a comprehensive analysis of the potential of MNSCs as a prospective energy storage technology. MNSCs utilize a specific configuration in which the negatrode consists of a metal or metal-rich electrode, such as sodium, aluminum, potassium, or zinc, whereas the positrode functions as a supercapacitor electrode. The utilization of negatrodes with low electrochemical potential and high electrical conductivity is crucial for achieving high specific energy in energy storage devices, despite facing numerous challenges. The present study discusses the design and fabrication aspects of MNSCs, including the selection of appropriate metal negatrodes, electrolytes, and positrodes, alongside the fundamental operational mechanisms. Additionally, this review explores the challenges encountered in MNSCs and proposes solutions to enhance their performance, such as addressing dendrite formation and instability of metal electrodes.
Collapse
Affiliation(s)
- Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Saad Ali
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Dahiru Shuaibu
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Atif Saeed Alzahrani
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Reviewable Energy and Power System (IRC- REPS), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Peng L, Wu D, Wang T, Guo J, Jia D. Cottonseed meal derived porous carbon prepared via the protease pretreatment and reduced activator dosage carbonization for supercapacitor. J Chem Phys 2023; 159:214702. [PMID: 38038207 DOI: 10.1063/5.0177247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The high catalytic activity and specificity of enzymes can be used to pretreat biomass. Herein, the resourceful, reproducible, cheap, and crude protein-rich cottonseed meal (CM) is selected as a precursor and the protease in the K2CO3-KHCO3 buffer solution is used as the enzyme degradation substance to pretreat CM. The crude protein content is significantly reduced by the protease degradation, and, meanwhile, it results in a looser and porous structure of CM. What is more, it significantly reduces the amount of activator. In the subsequent carbonization process, the K2CO3-KHCO3 in the buffer solution is also used as an activating agent (the mass ratio of CM to activator is 2:1), and after carbonization, the O, S, and N doped porous carbon is obtained. The optimized PCM-800-4 exhibits high heteroatom contents and a hierarchical porous structure. The specific capacitance of the prepared porous carbon reaches up to 233 F g-1 in 6M KOH even when 10 mg of active material is loaded. In addition, a K2CO3-KHCO3/EG based gel electrolyte is prepared and the fabricated flexible capacitor exhibits an energy density of 15.6 Wh kg-1 and a wide temperature range (-25 to 100 °C). This study presents a simple enzymatic degradation and reduced activator dosage strategy to prepare a cottonseed meal derived carbon material and looks forward to preparing porous carbon using other biomass.
Collapse
Affiliation(s)
- Lina Peng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
- The Analysis and Testing Center of Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| |
Collapse
|
21
|
Liao P, Song J, Qiu Z, Wen C, Zhang X, Guo L, Xu H. A Ti 3C 2T x@PANI core-shell heterostructure assembled into a 3D porous hydrogel as a free-standing electrode for high-energy supercapacitors. Phys Chem Chem Phys 2023; 25:31770-31780. [PMID: 37965755 DOI: 10.1039/d3cp01965a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although Ti3C2Tx MXenes have attracted attention in electrochemical energy storage devices due to their excellent electronic conductivity, controllable layer structure, and huge redox active surface area, the application of Ti3C2Tx as supercapacitor (SC) electrode materials is severely limited by the ineffective chemical ion transport kinetics caused by self-restacking. In order to increase the interlayer spacing of Ti3C2Tx, the intercalation method is hailed as an effective process. Herein, polyaniline (PANI) nanorods as intercalators were synthesized by the polymerization of an aniline (ANI) monomer chemisorbed onto Ti3C2Tx wrinkled nanosheets, and the formation of a Ti3C2Tx@PANI heterostructure is conducive to the large interlayer voids. Then, the heterostructure was integrated into a three-dimensional (3D) porous cross-linked framework via a simple graphene oxide (GO)-assisted self-convergence hydrothermal strategy with low temperatures. Due to the synergistic effect among each component and 3D porous interconnected structure, the hierarchical Ti3C2Tx@PANI-reduced graphene oxide (RGO) heterostructure hydrogel possesses the advantages of excellent electrical conductivity, high specific capacitance, repressive aggregation, and large electrochemical active area. Heterostructure hydrogel electrodes (without binders) display excellent electrochemical performance with a specific capacitance as high as 301.0 F g-1 at 1 A g-1, 90.74% capacitance retention over 10 000 cycles, and a maximum energy density of 44.6 W h kg-1 at a power density of 504.7 W kg-1. Our study provides a fresh strategy for constructing a 3D Ti3C2Tx-based framework applicable to other MXenes in the design of hybrid structures for maximizing their potential applications in energy storage.
Collapse
Affiliation(s)
- Peng Liao
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jian Song
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zenghui Qiu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Cheng Wen
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Zhang
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lin Guo
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Center of Renewable Energy, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China.
| | - Haijun Xu
- College of Mathematics & Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|