1
|
Zhou L, Zhao S, Xu Y, Li L, Wu Y, Zhu J, Xia D, Li F, Cai K, Zhang J. Spatial-Constraint Modulation of Intra/Extracellular Reactive Oxygen Species by Adaptive Hybrid Materials for Boosting Pyroptosis and Combined Immunotherapy of Breast Tumor. Adv Healthc Mater 2025:e2500371. [PMID: 40434189 DOI: 10.1002/adhm.202500371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Pyroptosis-immunotherapy has potential for triple-negative breast cancer treatment, but its efficacy is limited by insufficient pyroptosis activation and the need for phased, balanced, and spatially controlled activation of active species during long-term treatment. To reconcile intracellular/extracellular demands in tumor ablation, a nanoparticle-hydrogel hybrid enabling spatiotemporal reactive oxygen species (ROS) modulation is engineered. An open-shell sonosensitizer with unpaired electrons in its molecular orbitals is prepared by chelating Cu2⁺ with TCPP. These sonosensitizers are undergoing bovine serum albumin mediated biomineralization to form calcium phosphate particles and are incorporated into an injectable hydrogel through Schiff base crosslinking between dopamine-functionalized oxidized hyaluronic acid and gallic acid-modified chitosan. After intratumoral injection, nanoparticles endocytosed into tumor cells undergo acidic degradation, releasing calcium ions and GSH-activatable sonosensitizers. Calcium overload synergizes with ultrasound-mediated oxidative stress to induce mitochondrial damage and pyroptosis, while adhesive hydrogels retained in the extracellular matrix control excessive secondary ROS levels to protect oxidation-sensitive entities. This dual-action mechanism enhances the overall therapeutic effect by combining immediate tumor killing with long-term immune activation. This study provides a new route to hybrid material design, addressing the conflicting demands of short-term tumor ablation and long-term immune activation, overcoming the limitations of current pyroptosis-based immunotherapies.
Collapse
Affiliation(s)
- Luoli Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Sheng Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yijing Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
2
|
Zhu J, Jin Y, Wu Y, Mo D, Zhang T, Xiang L, Cai K, Zhang J. Harnessing Nanoreactors with Coupled Optical and Molecular Modalities for Photoenzymatic Modulation of Active Species in Cancer Photo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411336. [PMID: 40059567 DOI: 10.1002/smll.202411336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Indexed: 03/17/2025]
Abstract
The dynamic process in tumor ablation requires both the generation of reactive oxygen species (ROS) to elicit immunogenic cell death (ICD) and the subsequent reduction of ROS levels to maintain the stimulatory activity of signaling proteins and recover T cells' immune function. Inspired by the regulation mechanism of redox homeostasis in myeloid-derived suppressor cells and the high-selectivity in alcohols/aldehydes conversions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and Fe(III) synergistic catalysis, photoenzymatic modulators with contradictory but synergistic functions are developed for adaptive photo-immunotherapy of cancer. In particular, poly(caffeic acid) (PCA) nanospheres are synthesized by highly efficient oxidative polymerization of CA. The obtained π-conjugated structures have an extended absorbance in the near-infrared (NIR) region, narrow band energy (0.86 eV), and low exciton binding energy (43.56 meV) that lead to polymerization-enhanced type I photosensitization and photostability. Meanwhile, abundant semiquinone radicals existing in PCA bestow them with superior antioxidant function. Under NIR irradiation, the elevated superoxide radical yields (3.5-fold compared with CA) and heat stress elicit robust ICD. When irradiation ceases, active species downregulation and the infiltration of T lymphocytes increase by 2.7-fold compared with conventional photosensitizers. As envisaged, this work demonstrates a novel tactic to remodel redox and immune homeostasis for effective inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lunli Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
3
|
Wang Y, Xu Y, Qu Y, Jin Y, Cao J, Zhan J, Li Z, Chai C, Huang C, Li M. Ferroptosis: A novel cell death modality as a synergistic therapeutic strategy with photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 51:104463. [PMID: 39736368 DOI: 10.1016/j.pdpdt.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent additional strategies for tumor treatment. Photodynamic therapy (PDT) is a relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis. Ferroptosis, an iron-dependent type of programmed cell death characterized by accumulation of reactive oxygen species and lipid peroxidation products to lethal levels, has emerged as an attractive target trigger for tumor therapies. Recent research has revealed a close association between PDT and ferroptosis, suggesting that combining ferroptosis inducers with PDT could strengthen their synergistic anti-tumor efficiency. Here in this review, we discuss the rationale for combining PDT with ferroptosis inducers and highlight the progress of single-molecule photosensitizers to induce ferroptosis, as well as the applications of photosensitizers combined with other therapeutic drugs for collaborative therapy. Furthermore, given the current research dilemma, we propose potential therapeutic strategies to advance the combined usage of PDT and ferroptosis inducers, providing the basis and guidelines for prospective clinical translation and research directionality with regard to PDT.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiting Xu
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yong Qu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifang Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Jinshan Zhan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuxing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Diao S, Zhang Z, Zhao S, Li Q, Zhang X, Yang X, Xu Z, Liu M, Zhou W, Li R, Xie C, Fan Q. Dual-Activatable Nano-Immunomodulator for NIR-II Fluorescence Imaging-Guided Precision Cancer Photodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409833. [PMID: 39401431 PMCID: PMC11615741 DOI: 10.1002/advs.202409833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Indexed: 12/06/2024]
Abstract
Photodynamic immunotherapy which combines photodynamic therapy with immunotherapy has become an important and effective method for the treatment of cancer. However, most cancer photodynamic immunotherapeutic systems are not able to achieve precise release of immunomodulators, resulting in systemic side effects and poor patient outcomes. Herein, a dual-activatable nano-immunomodulator (DIR NP), which both its photodynamic effect and agonist release can be activated under specific stimuli, is reported for precision cancer photodynamic immunotherapy. The DIR NP is self-assembled from an R848-conjugated amphiphilic polymer (mPEG-TK-R848) and a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable photosensitizer (DIR). DIR NPs may generate a small amount of 1O2 under 808 nm laser irradiation, leading to the cleavage of thioketal (TK) moiety and release of R848 and DIR. The released DIR may conjugate with tumor-overexpressed BSA-SOH, improving its photodynamic efficiency and NIR-II fluorescence signal. Such photodynamic efficiency improvement may further enhance the release of cargoes upon irradiation. The activated photodynamic effect induces immunogenic cell death (ICD) to release immune factors and R848 can enhance the maturation of dendritic cells for inhibiting the growth of both primary and distant tumors and eliminating lung metastasis. Therefore, this study provides a dual-activatable intelligent nano-immunomodulator for precise regulation of tumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Zhifan Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Sijun Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Qiang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Xiaolong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Xiangqi Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Mingming Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
- Clinical Cancer Institute of Nanjing UniversityNanjing210008China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications9 Wenyuan RoadNanjing210023China
| |
Collapse
|
5
|
Lu S, Hao D, Meng Q, Zhang B, Xiang X, Pei Q, Xie Z. Ferrocene-Conjugated Paclitaxel Prodrug for Combined Chemo-Ferroptosis Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47325-47336. [PMID: 39190919 DOI: 10.1021/acsami.4c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Herein, we developed a paclitaxel prodrug (PSFc) through the conjugation of paclitaxel (PTX) and ferrocene via a redox-responsive disulfide bond. PSFc displays acid-enhanced catalytic activity of Fenton reaction and is capable of forming stable nanoparticles (PSFc NPs) through the assembly with distearoyl phosphoethanolamine-PEG2000. After being endocytosed, PSFc NPs could release PTX to promote cell apoptosis in response to overexpressed redox-active species of tumor cells. Meanwhile, the ferrocene-mediated Fenton reaction promotes intracellular accumulation of hydroxyl radicals and depletion of glutathione, thus leading to ferroptosis. Compared with the clinically used Taxol, PSFc NPs exhibited more potent in vivo antitumor outcomes through the combined effect of chemotherapy and ferroptosis. This study may offer insight into a facile design of a prodrug integrating different tumor treatment methods for combating malignant tumors.
Collapse
Affiliation(s)
- Shaojin Lu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dengyuan Hao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qian Meng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China
| | - Biyou Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qing Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
6
|
Du H, Wang F, Zhang R, Yan X, Zheng J, Zhou T, Wang X, Zhang G, Zhang Z. Rolling Circle Amplification-Based Self-Assembly to Form a "GPS-Nanoconveyor" for In Vitro Targeted Imaging and Enhanced Gene/Chemo (CRISPR/DOX) Synergistic Therapy. Biomacromolecules 2024; 25:4991-5007. [PMID: 39087761 DOI: 10.1021/acs.biomac.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The GPS-Nanoconveyor (MA-NV@DOX-Cas13a) is a targeted nanoplatform designed for the imaging and gene/chemotherapy synergistic treatment of melanoma. It utilizes rolling circle amplification (RCA) products as a scaffold to construct a DNA "Nanoconveyor" (NV), which incorporates a multivalent aptamer (MA) as a "GPS", encapsulates doxorubicin (DOX) in the transporter, and equips it with CRISPR/Cas13a ribonucleoproteins (Cas13a RNP). Carrying MA enhances the ability to recognize the overexpressed receptor nucleolin on B16 cells, enabling targeted imaging and precise delivery of MA-NV@DOX-Cas13a through receptor-mediated endocytosis. The activation of signal transducer and activator of transcription 3 (STAT3) in cancer cells triggers cis-cleavage of CRISPR/Cas13a, initiating its trans-cleavage function. Additionally, deoxyribonuclease I (DNase I) degrades MA-NV, releasing DOX for intracellular imaging and as a chemotherapeutic agent. Experiments demonstrate the superior capabilities of this versatile nanoplatform for cellular imaging and co-treatment while highlighting the advantages of these nanodrug delivery systems in mitigating DOX side effects.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
7
|
Lv M, Zhao B, Zhang J, Miao G, Wei S, Tang Y, Liu X, Qian H, Huang D, Chen W, Zhong Y. ROS-responsive core-shell nano-inhibitor impedes pyruvate metabolism for reinforced photodynamic therapy and interrupted pre-metastatic niche formation. Acta Biomater 2024; 182:288-300. [PMID: 38729547 DOI: 10.1016/j.actbio.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The formation of pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor requires the communication between the tumor cells and the host environment. Pyruvate is a fundamental nutrient by which the tumor cells metabolically reshape the extracellular matrix in the lung to facilitate their own metastatic development. Here we report a combination regimen by integrating the photo-sensitizer and the mitochondrial pyruvate carrier (MPC) inhibitor in a dendritic polycarbonate core-hyaluronic acid shell nano-platform with multivalent reversible crosslinker embedded in it (DOH-NI+L) to reinforce photodynamic therapy (PDT) toward the primary tumor and interrupt PMN formation in the lung via impeding pyruvate uptake. We show that DOH-NI+L mediates tumor-specific MPC inhibitor liberation, inhibiting the aerobic respiration for facilitated PDT and restraining ATP generation for paralyzing cell invasion. Remarkably, DOH-NI+L is demonstrated to block the metabolic crosstalk of tumor cell-host environment by dampening pyruvate metabolism, provoking a series of metabolic responses and resulting in the pulmonary PMN interruption. Consequently, DOH-NI+L realizes a significant primary tumor inhibition and an efficient pulmonary metastasis prevention. Our research extends nano-based anti-metastatic strategies aiming at PMN intervention and such a dendritic core-shell nano-inhibitor provides an innovative paradigm to inhibit tumor growth and prevent metastasis efficiently. STATEMENT OF SIGNIFICANCE: In the progression of cancer metastasis, the formation of a pre-metastatic niche (PMN) in a hospitable organ derived from the primary tumor is one of the rate-limiting stages. The current nano-based anti-metastatic modalities mainly focus on targeted killing of tumor cells and specific inhibition of tumor cell invasion, while nanomedicine-mediated interruption of PMN formation has been rarely reported. Here we report a combination regimen by integrating a photo-sensitizer and an inhibitor of mitochondrial pyruvate carrier in a dendritic core-shell nano-platform with a reversible crosslinker embedded in it to reinforce PDT toward the primary tumor and interrupt PMN formation via impeding the uptake of pyruvate that is a fundamental nutrient facilitating aerobic respiration and PMN formation. Our research proposed a nano-based anti-metastatic strategy aiming at PMN intervention.
Collapse
Affiliation(s)
- Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhi Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Siming Wei
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yecheng Tang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Wang Y, Yang L, Yan C, Du Y, Li T, Yang W, Lei L, He B, Gao H, Peppas NA, Cao J. Supramolecular artificial Nano-AUTACs enable tumor-specific metabolism protein degradation for synergistic immunotherapy. SCIENCE ADVANCES 2024; 10:eadn8079. [PMID: 38905336 PMCID: PMC11192078 DOI: 10.1126/sciadv.adn8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Autophagy-targeting chimera (AUTAC) has emerged as a powerful modality that can selectively degrade tumor-related pathogenic proteins, but its low bioavailability and nonspecific distribution significantly restrict their therapeutic efficacy. Inspired by the guanine structure of AUTAC molecules, we here report supramolecular artificial Nano-AUTACs (GM NPs) engineered by AUTAC molecule GN [an indoleamine 2,3-dioxygenase (IDO) degrader] and nucleoside analog methotrexate (MTX) through supramolecular interactions for tumor-specific protein degradation. Their nanostructures allow for precise localization and delivery into cancer cells, where the intracellular acidic environment can disrupt the supramolecular interactions to release MTX for eradicating tumor cells, modulating tumor-associated macrophages, activating dendritic cells, and inducing autophagy. Specifically, the induced autophagy facilitates the released GN for degrading immunosuppressive IDO to further enhance effector T cell activity and inhibit tumor growth and metastasis. This study offers a unique strategy for building a nanoplatform to advance the field of AUTAC in tumor immunotherapy.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lianyi Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Tinghua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Wenqing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Lei Lei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
9
|
Yao L, Tian F, Meng Q, Guo L, Ma Z, Hu T, Liang Q, Li Z. Reactive oxygen species-responsive supramolecular deucravacitinib self-assembly polymer micelles alleviate psoriatic skin inflammation by reducing mitochondrial oxidative stress. Front Immunol 2024; 15:1407782. [PMID: 38799436 PMCID: PMC11116664 DOI: 10.3389/fimmu.2024.1407782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.
Collapse
Affiliation(s)
- Leiqing Yao
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qinqin Meng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lu Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhimiao Ma
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiongwen Liang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Chang Q, Wang P, Zeng Q, Wang X. A review on ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment. Heliyon 2024; 10:e28942. [PMID: 38601678 PMCID: PMC11004815 DOI: 10.1016/j.heliyon.2024.e28942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death modality, which has showed great potential in anticancer treatment. Photodynamic therapy (PDT) is widely used in clinic as an anticancer therapy. PDT combined with ferroptosis-promoting therapy has been found to be a promising strategy to improve anti-cancer therapy efficacy. Fenton reaction in ferroptosis can provide oxygen for PDT, and PDT can produce reactive oxygen species for Fenton reaction to enhance ferroptosis. In this review, we briefly present the importance of ferroptosis in anticancer treatment, mechanism of ferroptosis, researches on PDT induced ferroptosis, and the mechanism of the synergistic effect of PDT and ferroptosis on cancer killing.
Collapse
Affiliation(s)
- Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
13
|
Cao Y, Meng F, Cai T, Gao L, Lee J, Solomevich SO, Aharodnikau UE, Guo T, Lan M, Liu F, Li Q, Viktor T, Li D, Cai Y. Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1950. [PMID: 38528388 DOI: 10.1002/wnan.1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/27/2024]
Abstract
The conventional therapeutic treatment of triple-negative breast cancer (TNBC) is negatively influenced by the development of tumor cell drug resistant, and systemic toxicity of therapeutic agents due to off-target activity. In accordance with research findings, nanoparticles (NPs) responsive to the tumor microenvironment (TME) have been discovered for providing opportunities to selectively target tumor cells via active targeting or Enhanced Permeability and Retention (EPR) effect. The combination of the TME control and therapeutic NPs offers promising solutions for improving the prognosis of the TNBC because the TME actively participates in tumor growth, metastasis, and drug resistance. The NP-based systems leverage stimulus-responsive mechanisms, such as low pH value, hypoxic, excessive secretion enzyme, concentration of glutathione (GSH)/reactive oxygen species (ROS), and high concentration of Adenosine triphosphate (ATP) to combat TNBC progression. Concurrently, NP-based stimulus-responsive introduces a novel approach for drug dosage design, administration, and modification of the pharmacokinetics of conventional chemotherapy and immunotherapy drugs. This review provides a comprehensive examination of the strengths, limitations, applications, perspectives, and future expectations of both novel and traditional stimulus-responsive NP-based drug delivery systems for improving outcomes in the medical practice of TNBC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ye Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, China
| | - Lanwen Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Tingting Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Meng Lan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Fengjie Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Qianwen Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| | - Timoshenko Viktor
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Detang Li
- The First Clinical Medical School of Guangzhou University of Chinese Medicine/Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine/Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yu Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Key Lab of Traditional Chinese Medicine Informatization/International Science and Technology Cooperation Base of Guangdong Province/School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
15
|
Yang M, Tian J, Zhang K, Fei X, Yin F, Xu L, Wang Y, Li Y. Bioinspired Adhesive Antibacterial Hydrogel with Self-Healing and On-Demand Removability for Enhanced Full-Thickness Skin Wound Repair. Biomacromolecules 2023; 24:4843-4853. [PMID: 37801393 DOI: 10.1021/acs.biomac.3c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Adhesive-caused injury is a great threat for extensive full-thickness skin trauma because extra-strong adhesion can incur unbearable pain and exacerbate trauma upon removal. Herein, inspired by the mussel, we designed and fabricated an adhesive antibacterial hydrogel dressing based on dynamic host-guest interaction that enabled on-demand stimuli-triggered removal to effectively care for wounds. In contrast with most hard-to-removable dressing, this adhesive antibacterial hydrogel exhibited strong adhesion property (85 kPa), which could achieve painless and noninvasive on-demand separation within 2 s through a host-guest competition mechanism (amantadine). At the same time, the hydrogel exhibited rapid self-healing properties, and the broken hydrogel could be completely repaired within 5 min. The hydrogel also had excellent protein adsorption properties, mechanical properties, antibacterial properties, and biocompatibility. This on-demand removal was facilitated by the introduction of amantadine as a competitive guest, without any significant adverse effects on cell activity (>90%) or wound healing (98.5%) in vitro. The full-thickness rat-skin defect model and histomorphological evaluation showed that the hydrogel could significantly promote wound healing and reduce scar formation by regulating inflammation, accelerating skin re-epithelialization, and promoting granulation tissue formation. These results indicate that the developed adhesive antibacterial hydrogel offers a promising therapeutic strategy for the healing of extensive full-layer skin injuries.
Collapse
Affiliation(s)
- Minwei Yang
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaiwen Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fawen Yin
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
| | - Longquan Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400 China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Zhang X, Zhang X, Guo H, Jia S, Li Y, Xing S, Chang J, Wang S. A Photo-Activated Continuous Reactive Oxygen Species Nanoamplifier for Dual-Dynamic Cascade Cancer Therapy. Adv Healthc Mater 2023; 12:e2301469. [PMID: 37571991 DOI: 10.1002/adhm.202301469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The special redox homeostasis of tumor cells makes reactive oxygen species (ROS)-based approaches a promising cancer therapeutic strategy. Among these approaches, photodynamic therapy is the most widely studied ROS-based treatment due to its ability to achieve targeted therapy by local light irradiation. However, achieving efficient and continuous ROS generation without prolonged laser exposure is still challenging. In this work, a photo-activated continuous ROS nanoamplifier is proposed for photodynamic-chemodynamic cascade therapy. Upon local laser irradiation, the nanoamplifier can continuously amplify cellular oxidative stress through a positive feedback loop of "light-triggered ROS generation, ROS-responsive prodrug activation, and Fenton reaction-mediated ROS cyclic regenerative amplification", avoiding tissue damage caused by excessive laser exposure. This strategy provides a potential pathway to overcome the limitations of ROS-based therapeutic approaches.
Collapse
Affiliation(s)
- Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Haizhen Guo
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Shitian Jia
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Suixin Xing
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Jin Chang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
17
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
18
|
Li H, Zhang M, He J, Liu J, Sun X, Ni P. A CD326 monoclonal antibody modified core cross-linked curcumin-polyphosphoester prodrug for targeted delivery and cancer treatment. J Mater Chem B 2023; 11:9467-9477. [PMID: 37782068 DOI: 10.1039/d3tb01703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Stimuli-responsive cross-linked micelles (SCMs) are ideal nanocarriers for anti-cancer drugs. Compared with non-cross-linked micelles, SCMs exhibit superior structural stability. At the same time, the introduction of an environmentally sensitive crosslinker into a drug delivery system allows SCMs to respond to single or multiple stimuli in the tumor microenvironment, which can minimize drug leakage during the blood circulation process. In this study, curcumin (CUR) was modified as the hydrophobic core crosslinker by utilizing the bisphenol structure, and redox sensitive disulfide bonds were introduced to prepare the glutathione (GSH) stimulated responsive core crosslinker (abbreviated as N3-ss-CUR-ss-N3). In addition, amphiphilic polymer APEG-b-PBYP was prepared through the ring opening reaction, and reacted with the crosslinker through the "click" reaction. After being dispersed in the aqueous phase, core cross-linked nanoparticles (CCL NPs) were obtained. Finally, monoclonal antibody CD326 (mAb-CD326) was reduced and coupled to the hydrophilic chain ends to obtain the nanoparticles with surface modified antibodies (R-mAb-CD326@CCL NPs) for further enhancing targeted drug delivery. The structures of the polymer and crosslinker were characterized by 1H NMR, UV-Vis, FT-IR, and GPC. The morphology, size and stability of CCL NPs and R-mAb-CD326@CCL NPs were investigated by DLS and TEM. The in vitro drug release behavior of CCL NPs was also studied. The results showed that the CCL NPs exhibited reduction-responsiveness and were able to release the original drug CUR under 10 mM GSH conditions. Additionally, the CCL NPs exhibited excellent stability in both the simulated body fluid environment and organic solvents. Especially, R-mAb-CD326@CCL NPs can actively target tumor cells and showed better therapeutic efficacy in in vivo experiments with a tumor suppression rate of 78.7%. This work provides a new idea for the design of nano-drugs targeting breast cancer.
Collapse
Affiliation(s)
- Haijiao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
19
|
Guo Y, Ma R, Zhang M, Cao Y, Zhang Z, Yang W. Nanotechnology-Assisted Immunogenic Cell Death for Effective Cancer Immunotherapy. Vaccines (Basel) 2023; 11:1440. [PMID: 37766117 PMCID: PMC10534761 DOI: 10.3390/vaccines11091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor vaccines have been used to treat cancer. How to efficiently induce tumor-associated antigens (TAAs) secretion with host immune system activation is a key issue in achieving high antitumor immunity. Immunogenic cell death (ICD) is a process in which tumor cells upon an external stimulus change from non-immunogenic to immunogenic, leading to enhanced antitumor immune responses. The immune properties of ICD are damage-associated molecular patterns and TAA secretion, which can further promote dendritic cell maturation and antigen presentation to T cells for adaptive immune response provocation. In this review, we mainly summarize the latest studies focusing on nanotechnology-mediated ICD for effective cancer immunotherapy as well as point out the challenges.
Collapse
Affiliation(s)
- Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|