1
|
Cheng XF, Jiang LH, Zhao XP, Ye W, Wei SX, He JH, Zhan ZB. Metal-Doped CoS Nanosheets: Breaking Scaling Limitations for Enhanced Urea Electrooxidation and Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26766-26774. [PMID: 40266697 DOI: 10.1021/acsami.5c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The electrocatalytic urea oxidation reaction (UOR) is a promising approach to lowering the energy barrier of the anode half-reaction in water splitting for energy-efficient hydrogen production and to remove excess urea from blood or dialysis fluid. However, the sluggish kinetics and large overpotential caused by scaling relationships significantly limit the development of the UOR technology. Herein, bifunctional amorphous M-CoS (M = Zr, Cu, Mn, Fe) nanosheets were synthesized via a one-step electrodeposition process. Among them, Zr-CoS exhibited exceptional electrocatalytic performance, achieving 10 mA cm-2 in UOR at an overpotential of 1.26 V, outperforming recently reported catalysts, while CoS demonstrated 10 mA cm-2 in the hydrogen evolution reaction at an impressively low overpotential of -175 mV. Density functional theory calculations revealed that doped Cu and Zr ions migrated to the adsorption sites of N atoms before and after C-N cleavage, breaking the limitation of scaling relationships. Meanwhile, the energy barrier of the C-N cleavage step showed a good linear relationship with the variation of integrated crystal orbital Hamilton population (ΔICOHP), indicating that ΔICOHP was a good descriptor to evaluate UOR performances. This work not only emphasized the outstanding performances of Zr-CoS but also offered innovative insights into the role of metal sulfides in UOR.
Collapse
Affiliation(s)
- Xue-Feng Cheng
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Li-Hua Jiang
- College of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao-Peng Zhao
- College of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen Ye
- College of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shang-Xiong Wei
- College of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing-Hui He
- College of Chemistry, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Zhou-Bing Zhan
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Ji C, Duan H, Wang C, Liang G, Long X, She X, Zhang R, Gong F, Li D, Yang D, Liu J. Pairing N-Vacancy and Adjacent Ni-Sites in the Local Microenvironment to Regulate the Urea Oxidation Reaction Pathway With Enhanced Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503879. [PMID: 40237240 DOI: 10.1002/adma.202503879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Indexed: 04/18/2025]
Abstract
The urea oxidation reaction (UOR) is a promising approach for replacing the oxygen evolution reaction in hydrogen production, offering lower energy consumption. However, the kinetics of Ni-based catalysts for UOR are hindered by the high formation potential of NiOOH and its repeated transition with Ni(OH)2. In this study, a local microenvironment featuring electron-deficient N-vacancies (VN) paired with adjacent electron-rich Ni-sites on Ni3N (Ni3N-VN) to enhance UOR kinetics is constructed. The electron-rich Ni-sites significantly reduce the energy barrier for NiOOH formation and promote the conversion of Ni(OH)2 to NiOOH. Meanwhile, the VN sites induce low charge transfer resistance in Ni3N, facilitating efficient electron transfer and boosting UOR performance while ensuring the stability of the active NiOOH phase. The VN sites promote the adsorption of the urea N atom at the active site, favoring the reaction pathway toward "NCO⁻" formation without requiring complete urea dissociation. This pathway alleviates the NiOOH/Ni(OH)2 conversion cycle, lowers charge transfer resistance, and improves reaction kinetics. Ni3N-VN demonstrates excellent UOR activity (low potential of 1.46 V at 1000 mA cm-2) and industrial prospects (integrating into an anion exchange membrane flow electrolyzer with 20% Pt/C, producing 600 mA cm-2 at 1.84 V), highlighting its potential for practical applications.
Collapse
Affiliation(s)
- Chengwei Ji
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Huimei Duan
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chuanhui Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guizeng Liang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xilin She
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongrong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dongjiang Yang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, P. R. China
| | - Jian Liu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
- DICP-Surrey Joint Centre for Future Materials, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
3
|
Zhang HC, Xu HM, Huang CJ, Zhu HR, Li GR. Recent Progress in the Design and Application of Strong Metal-Support Interactions in Electrocatalysis. Inorg Chem 2025; 64:4713-4748. [PMID: 40036527 DOI: 10.1021/acs.inorgchem.4c05056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The strong metal-support interaction (SMSI) in supported metal catalysts represents a crucial factor in the design of highly efficient heterogeneous catalysts. This interaction can modify the surface adsorption state, electronic structure, and coordination environment of the supported metal, altering the interface structure of the catalyst. These changes serve to enhance the catalyst's activity, stability, and reaction selectivity. In recent years, a multitude of researchers have uncovered a range of novel SMSI types and induction methods including oxidized SMSI (O-SMSI), adsorbent-mediated SMSI (A-SMSI), and wet chemically induced SMSI (Wc-SMSI). Consequently, a systematic and critical review is highly desirable to illuminate the latest advancements in SMSI and to deliberate its application within heterogeneous catalysts. This article provides a review of the characteristics of various SMSI types and the most recent induction methods. It is concluded that SMSI significantly contributes to enhancing catalyst stability, altering reaction selectivity, and increasing catalytic activity. Furthermore, this paper offers a comprehensive review of the extensive application of SMSI in the electrocatalysis of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). Finally, the opportunities and challenges that SMSI faces in the future are discussed.
Collapse
Affiliation(s)
- Hong-Cheng Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Nwaji N, Fikadu B, Osial M, Warczak M, Moazzami Goudarzi Z, Gniadek M, Asgaran S, Lee J, Giersig M. Advanced Functional NiCo 2S 4@CoMo 2S 4 Heterojunction Couple as Electrode for Hydrogen Production via Energy-Saving Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410848. [PMID: 39807684 DOI: 10.1002/smll.202410848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCo2S4/CoMo2S4 grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction. The Density Functional Theory (DFT) study reveals spontaneous transfer of charge at the heterointerface of NiCo2S4/CoMo2S4, which triggers the formation of localized electrophilic/nucleophilic regions and facilitates the adsorption of electron donating/electron withdrawing group in urea molecules during the UOR. The NiCo2S4/CoMo2S4// NiCo2S4/CoMo2S4 electrode pair required only a cell voltage of 1.17 and 1.18 V to deliver a current density of 10 and 100 mA cm-2 respectively in urea electrolysis cell and display very good stability. Tests performed in real urine samples show similar catalytic performance to urea electrolytes, making the work one of the best transition metal-based catalysts for UOR applications, promising both efficient hydrogen production and urea decomposition.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02-106, Poland
| | - Boka Fikadu
- Department Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02-106, Poland
| | - Magdalena Warczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3 street, Bydgoszcz, 85-326, Poland
| | - Zahra Moazzami Goudarzi
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw, 02-106, Poland
| | - Marianna Gniadek
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., Warsaw, 02-093, Poland
| | - Sohrab Asgaran
- Helmaco Sp. Z o.o. Company, Ostrobramska 101/335K, Warszawa, 04-041, Poland
| | - Jaebeom Lee
- Department Chemistry, Chungnam National University, Daejeon, 34134, South Korea
- Department Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Michael Giersig
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B Str., Warsaw, 02-106, Poland
| |
Collapse
|
5
|
Satheesan AK, Madhu R, Nagappan S, Dhandapani HN, De A, Singha Roy S, Mazumder P, Kundu S. Current progress in layered double hydroxide-based electrocatalysts for urea oxidation: insights into strategies and mechanisms. Chem Commun (Camb) 2025. [PMID: 39957435 DOI: 10.1039/d4cc05405a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The urea oxidation reaction (UOR) presents a more favorable alternative to the conventional oxygen evolution reaction (OER) for hydrogen production due to its lower thermodynamic potential. This method offers advantages over traditional hydrogen production approaches due to favorable operating conditions and potentially lower costs. However, the complex 6-electron transfer process in UOR limits its performance. Researchers are tackling this challenge by designing advanced electrocatalysts with optimized properties, such as porosity, heterostructures, controlled defects, surface functionalization, and fine-tuned electronic structures. This significant progress in UOR catalyst design holds promise for the future of clean energy technologies. In view of this, layered double hydroxides (LDHs) are attracting significant interest for their potential role in urea electrolysis due to the synergistic cooperation of metals, flexible configuration, tunable electronic composition and unique layered structure. This review examines the recent significant advancements in the design and synthesis of LDH-based UOR catalysts. Beyond highlighting recent breakthroughs in UOR catalysts, this review critically stresses the design strategies and challenges in urea electrolysis towards energy conversion. Moreover, this comprehensive approach provides a valuable forward-looking perspective on future research directions.
Collapse
Affiliation(s)
- Asha K Satheesan
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ragunath Madhu
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sreenivasan Nagappan
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Hariharan N Dhandapani
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditi De
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suprobhat Singha Roy
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Prasita Mazumder
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subrata Kundu
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Zhan QN, Zhang H, Huang CJ, Xu HM, Shuai TY, Zhu HR, Li GR. Ni Single Atoms/Fe 3N Nanoparticles Supported by N-Doped Carbon Hollow Nanododecahedras with Nanotubes on the Surface for Efficient Electro-Reduction of CO 2 to CO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410723. [PMID: 39846856 DOI: 10.1002/smll.202410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Indexed: 01/24/2025]
Abstract
The transition metal single atoms (SAs)-based catalysts with M-NX coordination environment have shown excellent performance in electrocatalytic reduction of CO2, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni2+ and Fe2+ ions is reported for the synthesis of Ni SAs and Fe3N nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/Fe3N NPs@NC-HNDs-NTs). The synergistic effect between Ni SAs and Fe3N NPs can obviously improve the proton-coupled electron transfer step of CO2 reduction reaction and promotes the process of electrocatalytic reduction of CO2 to CO. The fabricated Ni SAs/Fe3N NPs@NC-HNDs-NTs exhibits a high CO selectivity of up to 94% in the potential range of -0.41--0.81 V versus Reversible Hydrogen Electrode (vs RHE), and an optimal CO Faraday efficiency (FECO) of ≈97.31% at -0.68 V (vs RHE) in the reduction reaction CO2 to CO. In the theoretical calculation results, due to the non-bonding synergy effect between Ni SAs and Fe3N NPs, the free energy of *COOH formation is greatly reduced and the adsorption of *CO is obviously improved, which will efficiently promote the conversion between the intermediates in the reaction step and accelerate electro-reduction process of CO2. This work will provide a new method for constructing a mutually optimized coordination environment between Ni SAs and Fe3N NPs to improve the catalytic performance of CO2RR by synergistic complementarity between the dual active sites.
Collapse
Affiliation(s)
- Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Zhang
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
- Electron Microscopy Center, Yunnan University, Kunming, 650091, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Sheng W, Zhou X, Ajmal S, Chen X, Ma Y, Chen P, Zhu M, Li P. Dual-doped medium-entropy phosphides for complete urea electrolysis. J Colloid Interface Sci 2025; 678:1192-1202. [PMID: 39342864 DOI: 10.1016/j.jcis.2024.09.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Developing dual-functional electrocatalysts for urea-water decomposition still faces significant challenges. In this study, the vanadium (V) and cerium (Ce) co-doped FeCoNi medium-entropy phosphide (VCe-FeCoNiP/NF) were effectively fabricated on nickel foam (NF) via "two-step method," which involved hydrothermal treatment followed by phosphorization. Experimental results indicate that, benefiting from dual-ion doping and medium-entropy configuration, VCe-FeCoNiP/NF demonstrates unique electronic effects among the multimetallic elements, thereby exhibited remarkable catalytic activity for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Under urea-water conditions (1 M KOH with 0.33 M urea), the VCe-FeCoNi/NF catalyst merely required 1.338 V (vs RHE) and an overpotential of 173 mV to attain a current density of 100 mA·cm-2 for UOR and HER, respectively. Moreover, it could stably operate at a current density of 20 mA·cm-2 for 225 h in overall urea-water decomposition. This work provides new insights for designing high-performance urea-water electrolysis catalysts.
Collapse
Affiliation(s)
- Wenxiang Sheng
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Xiaoxing Zhou
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Sara Ajmal
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Xiao Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Yuanhang Ma
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ping Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Mangzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| | - Peng Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
8
|
Sun H, Luo Z, Chen M, Zhou T, Wang B, Xiao B, Lu Q, Zi B, Zhao K, Zhang X, Zhao J, He T, Zhang J, Cui H, Liu F, Wang C, Wang D, Liu Q. Manipulating Trimetal Catalytic Activities for Efficient Urea Electrooxidation-Coupled Hydrogen Production at Ampere-Level Current Densities. ACS NANO 2024; 18:35654-35670. [PMID: 39661809 DOI: 10.1021/acsnano.4c14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Replacing the oxygen evolution reaction (OER) with the urea oxidation reaction (UOR) in conjunction with the hydrogen evolution reaction (HER) offers a feasible and environmentally friendly approach for handling urea-rich wastewater and generating energy-saving hydrogen. However, the deactivation and detachment of active sites in powder electrocatalysts reported hitherto present significant challenges to achieving high efficiency and sustainability in energy-saving hydrogen production. Herein, a self-supported bimetallic nickel manganese metal-organic framework (NiMn-MOF) nanosheet and its derived heterostructure composed of NiMn-MOF decorated with ultrafine Pt nanocrystals (PtNC/NiMn-MOF) are rationally designed. By leveraging the synergistic effect of Mn and Ni, along with the strong electronic interaction between NiMn-MOF and PtNC at the interface, the optimized catalysts (NiMn-MOF and PtNC/NiMn-MOF) exhibit substantially reduced potentials of 1.459 and -0.129 V to reach 1000 mA cm-2 during the UOR and HER. Theoretical calculations confirm that Mn-doping and the heterointerface between NiMn-MOF and Pt nanocrystals regulate the d-band center of the catalyst, which in turn enhances electron transfer and facilitates charge redistribution. This manipulation optimizes the adsorption/desorption energies of the reactants and intermediates in both the HER and UOR, thereby significantly reducing the energy barrier of the rate-determining step (RDS) and enhancing the electrocatalytic performance. Furthermore, the urea degradation rates of PtNC/NiMn-MOF (96.1%) and NiMn-MOF (90.3%) are significantly higher than those of Ni-MOF and the most reported advanced catalysts. This work provides valuable insights for designing catalysts applicable to urea-rich wastewater treatment and energy-saving hydrogen production.
Collapse
Affiliation(s)
- Huachuan Sun
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Zhonge Luo
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Mingpeng Chen
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Boxue Wang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Bin Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Kai Zhao
- Department of Physics, College of Science, Shihezi University, Xinjiang 832003, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Hao Cui
- Yunnan Precious Metals Laboratory Co., Ltd., Kunming 650106, P. R. China
| | - Feng Liu
- Yunnan Precious Metals Laboratory Co., Ltd., Kunming 650106, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
9
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Ngo QP, Prabhakaran S, Kim DH, Kim BS. Rational Design of Ultrahigh-Loading Ir Single Atoms on Reconstructed Mn─NiOOH for Enhanced Catalytic Performance in Urea-Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406786. [PMID: 39467020 DOI: 10.1002/smll.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Investigating advanced electrocatalysts is crucial for improving the efficacy of water splitting to generate environmentally friendly fuel. The discovery of highly effective electrocatalysts, capable of driving oxygen evolution reaction (OER) and urea oxidation reaction (UOR) in urea-alkaline environments, is pivotal for advancing large-scale hydrogen production. This study aims to introduce a new method that involves creating nanosheets of high-loading iridium single atoms embedded in a manganese-containing nickel oxyhydroxide matrix (Ir@Mn─NiOOH). These nanostructures are derived from self-supported hydrate pre-catalyst nanosheets grown on nickel foam and then activated through electrochemical etching pretreatment. The Ir@Mn─NiOOH nanoarchitecture displays outstanding electrocatalytic activity, having a low overpotential of just 258 mV and a potential of 1.319 V (at 10 mA cm-2) for OER and UOR, respectively. Such extraordinary catalytic characteristics of Ir@Mn─NiOOH is mainly owing to the strong synthetic electronic interaction between Ir single atoms and Mn─NiOOH, which can change its electronic characteristics and boost electrochemical catalytic sites. This research presents a new way to produce exceptionally efficient catalysts by adding a synergistic effect to complex multi-electron processes.
Collapse
Affiliation(s)
- Quynh Phuong Ngo
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
11
|
Zhang S, Zhao M, Zhang X, Wang C, Zhang C, Xing H, Yang C, Ma R, Guo C. Charge-redistributed Co 3O 4/Fe 0.3Co 0.7P heterointerfaces for efficient electrocatalytic urea oxidation. Chem Commun (Camb) 2024; 60:14184-14187. [PMID: 39470744 DOI: 10.1039/d4cc04468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Charge-redistributed Co3O4/Fe0.3Co0.7P heterointerfaces are designed for effective electrocatalytic urea oxidation in alkaline medium, delivering excellent performance with only 1.41 V vs. RHE at 100 mA cm-2, low Tafel slope of 74 mV dec-1 and 36-h robust stability. The fine regulation of charge redistribution through heterointerfaces provides an effective strategy to design highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Shan Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Ming Zhao
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chao Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218-2625, USA
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Huanhuan Xing
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chunzi Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Ruguang Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| |
Collapse
|
12
|
Yang X, Liu Y, Chen Q, Yu W, Zhong Q. Fe-Doped Ni 3S 2 Induces Self-Reconstruction for Urea-Assisted Water Electrolysis Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24605-24612. [PMID: 39503374 DOI: 10.1021/acs.langmuir.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Urea oxidation reaction (UOR) is an attractive alternative anodic reaction to oxygen evolution reaction (OER) for its low thermodynamic potential (0.37 V vs RHE). A major challenge that prohibits its practical application is the six-electron transfer process during UOR, demanding enhancements in the catalytic activity. Herein, a Fe-doped Ni3S2 catalyst with a uniform flower-like structure is synthesized in situ on nickel foam via a simple one-step hydrothermal method. The electrochemical properties of Fe-Ni3S2 are significantly improved since a current density of 10 mA cm-2 only requires a 1.33 V potential and remains stable for 60 h. The structural characterization demonstrates a strong interaction between Fe and Ni3S2. After Fe doping, the active site increases, which promotes the formation of NiOOH on the catalyst surface, thus speeding up the UOR process. These changes are beneficial to charge transfer and optimize the adsorption energy of the intermediates. In situ EIS further confirms that Fe promotes electron transfer during the UOR process, reduces the interface resistance between the catalyst and the electrolyte, and lowers the driving voltage.
Collapse
Affiliation(s)
- Xinyu Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yifeng Liu
- Wanhua Chemical Group Co., Ltd., Yantai Development Zone,Yantai 264002, Shandong, China
| | - Qianqiao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wanchin Yu
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Zhang ZJ, Xu HM, Huang CJ, Shuai TY, Zhan QN, Li GR. Recent advances in the synthesis of transition metal hydroxyl oxide catalysts and their application in electrocatalytic oxygen evolution reactions. NANOSCALE 2024; 16:19970-19997. [PMID: 39412523 DOI: 10.1039/d4nr02400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
With the extensive use of fossil energy, people will face the depletion of fossil energy and increasingly severe problems. As a non-polluting, high specific energy density energy source, hydrogen energy is expected to solve this problem by producing hydrogen through electrolysis of water through renewable energy power generation. Water electrolysis technology involves two important half-reactions: the cathode hydrogen evolution reaction (HER) and anode oxygen evolution reaction (OER). The OER is a 4-electron transfer process with a high energy barrier. In order to achieve higher energy conversion, OER catalyst technology is a key part of the process. Researchers have conducted a lot of research into high-performance, high-stability, and highly economical OER catalysts, among which oxyhydroxide (MOOH), as an active substance for OER, has received particular attention. This article provides a timely follow-up to the research on oxyhydroxides, first introducing the two catalytic mechanisms of OER, namely the adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM). Then, strategies are proposed to improve OER catalytic performance by increasing catalytic active surface area/active sites, optimizing intermediate adsorption energy based on the AEM, triggering the LOM, and enhancing catalyst stability. Finally, the challenges and future development directions of MOOH catalysts are analyzed, which provides guidance for the design and preparation of high-performance OER catalysts in the future.
Collapse
Affiliation(s)
- Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Sohel A, Kovilakath MSN, Gogoi PJ, Ansari H, Phukan P, Bag S, John NS, Baksi A. Mechanistic Insights into the Stabilization of In Situ Formed γ-NiOOH Species on Ni 60Nb 40 Nanoglass for Effective Urea Electro-Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405160. [PMID: 39109948 DOI: 10.1002/smll.202405160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Indexed: 11/22/2024]
Abstract
The formation of NiOOH on the catalyst surface is widely considered to be the active species in electrochemical urea oxidation reactions (UOR). Though in situ-formed NiOOH species are reported to be more active than the synthesized ones, the mechanistic study of the actual active species remains a daunting task due to the possibility of different phases and instability of surface-formed NiOOH. Herein, mechanistic UOR aspects of electrochemically activated metallic Ni60Nb40 Nanoglass showing stability toward the γ-NiOOH phase are reported, probed via in situ Raman spectroscopy, supported by electron microscopy analysis and X-ray photoelectron spectroscopy in contrast with the β-NiOOH formation favored on Ni foil. Detailed mechanistic study further reveals that γ-NiOOH predominantly follows a direct UOR mechanism while β-NiOOH favors indirect UOR from time-dependent Raman study, and electrochemical impedance spectroscopy (EIS) analysis. The Nanoglass has shown outstanding UOR performance with a low Tafel slope of 16 mV dec-1 and stability for prolonged electrolysis (≈38 mA cm-2 for 70 h) that can be attributed to the nanostructured glassy interfaces facilitating more γ-NiOOH species formation and stabilization on the surface. The present study opens up a new direction for the development of inexpensive Ni-based UOR catalysts and sheds light on the UOR mechanism.
Collapse
Affiliation(s)
- Amir Sohel
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Palash J Gogoi
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasem Ansari
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Plabana Phukan
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Soumabha Bag
- Department of Industrial Chemistry, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Neena S John
- Centre for Nano and Soft Matter Sciences, Bangalore, Karnataka, 562162, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
15
|
Huang J, Shi Z, Mao C, Yang G, Chen Y. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402511. [PMID: 38837861 DOI: 10.1002/smll.202402511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Electrocatalytic water splitting (EWS) driven by renewable energy is widely considered an environmentally friendly and sustainable approach for generating hydrogen (H2), an ideal energy carrier for the future. However, the efficiency and economic viability of large-scale water electrolysis depend on electrocatalysts that can efficiently accelerate the electrochemical reactions taking place at the two electrodes. Wood-derived nanomaterials are well-suited for serving as EWS catalysts because of their hierarchically porous structure with high surface area and low tortuosity, compositional tunability, cost-effectiveness, and self-standing integral electrode configuration. Here, recent advancements in the design and synthesis of wood-structured nanomaterials serving as advanced electrocatalysts for water splitting are summarized. First, the design principles and corresponding strategies toward highly effective wood-structured electrocatalysts (WSECs) are emphasized. Then, a comprehensive overview of current findings on WSECs, encompassing diverse structural designs and functionalities such as supported-metal nanoparticles (NPs), single-atom catalysts (SACs), metal compounds, and heterostructured electrocatalysts based on engineered wood hosts are presented. Subsequently, the application of these WSECs in various aspects of water splitting, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), overall water splitting (OWS), and hybrid water electrolysis (HWE) are explored. Finally, the prospects, challenges, and opportunities associated with the broad application of WSECs are briefly discussed. This review aims to provide a comprehensive understanding of the ongoing developments in water-splitting catalysts, along with outlining design principles for the future development of WSECs.
Collapse
Affiliation(s)
- Jianlin Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Zhikai Shi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Chengwei Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Gaixiu Yang
- CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yan Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Song CY, Huang CJ, Xu HM, Zhang ZJ, Shuai TY, Zhan QN, Li GR. High-Performance Bifunctional Electrocatalysts for Flexible and Rechargeable Zn-Air Batteries: Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402761. [PMID: 38953299 DOI: 10.1002/smll.202402761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Flexible rechargeable Zn-air batteries (FZABs) exhibit high energy density, ultra-thin, lightweight, green, and safe features, and are considered as one of the ideal power sources for flexible wearable electronics. However, the slow and high overpotential oxygen reaction at the air cathode has become one of the key factors restricting the development of FZABs. The improvement of activity and stability of bifunctional catalysts has become a top priority. At the same time, FZABs should maintain the battery performance under different bending and twisting conditions, and the design of the overall structure of FZABs is also important. Based on the understanding of the three typical configurations and working principles of FZABs, this work highlights two common strategies for applying bifunctional catalysts to FZABs: 1) powder-based flexible air cathode and 2) flexible self-supported air cathode. It summarizes the recent advances in bifunctional oxygen electrocatalysts and explores the various types of catalyst structures as well as the related mechanistic understanding. Based on the latest catalyst research advances, this paper introduces and discusses various structure modulation strategies and expects to guide the synthesis and preparation of efficient bifunctional catalysts. Finally, the current status and challenges of bifunctional catalyst research in FZABs are summarized.
Collapse
Affiliation(s)
- Chen-Yu Song
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Lu J, Jiang W, Deng R, Feng B, Yin S, Tsiakaras P. Tailoring competitive adsorption sites of hydroxide ion to enhance urea oxidation-assisted hydrogen production. J Colloid Interface Sci 2024; 667:249-258. [PMID: 38636226 DOI: 10.1016/j.jcis.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Alloys with bimetallic electron modulation effect are promising catalysts for the electrooxidation of urea. However, the side reaction oxygen evolution reaction (OER) originating from the competitive adsorption of OH- and urea severely limited the urea oxidation reaction (UOR) activity on the alloy catalysts. This work successfully constructs the defect-rich NiCo alloy with lattice strain (PMo-NiCo/NF) by rapid pyrolysis and co-doping. By taking advantage of the compressive strain, the d-band center of NiCo is shifted downward, inhibiting OH- from adsorbing on the NiCo site and avoiding the detrimental OER. Meanwhile, the oxygenophilic P/Mo tailored specific adsorption sites to adsorb OH- preferentially, which further released the NiCo sites to ensure the enriched adsorption of urea, thus improving the UOR efficiency. As a result, PMo-NiCo/NF only requires 1.27 V and -57 mV to drive a current density of ±10 mA cm-2 for UOR and hydrogen evolution reaction (HER), respectively. With the guidance of this work, reactant competing adsorption sites could be tailored for effective electrocatalytic performance.
Collapse
Affiliation(s)
- Jiali Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Rui Deng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Boyao Feng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Panagiotis Tsiakaras
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
18
|
Zhao T, Du W, Gong B, Xu G, Jiang J, Feng Y, Li Y, Zhang L. Interface Enables Faster Surface Reconstruction in a Heterostructured CuSe y/NiSe x Electrocatalyst for Realizing Urea Oxidation. Inorg Chem 2024; 63:9265-9274. [PMID: 38724113 DOI: 10.1021/acs.inorgchem.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Creating affordable electrocatalysts and understanding the real-time catalytic process of the urea oxidation reaction (UOR) are crucial for advancing urea-based technologies. Herein, a Cu-Ni based selenide electrocatalyst (CuSey/NiSex/NF) was created using a hydrothermal technique and selenization treatment, featuring a heterogeneous interface rich in Cu2-xSe, Cu3Se2, Ni3Se4, and NiSe2. This catalyst demonstrated outstanding urea electrooxidation performance, achieving 10 mA cm-2 with just 1.31 V and sustaining stability for 96 h. Through in-situ Raman spectroscopy and ex-situ characterizations, it is discovered that NiOOH is formed through surface reconstruction in the UOR process, with high-valence Ni serving as the key site for effective urea oxidation. Moreover, the electrochemical analysis revealed that CuSey had dual effects. An analysis of XPS and electrochemical tests revealed that electron transfer from CuSey to NiSex within the CuSey/NiSex/NF heterostructure enhanced the UOR kinetics of the catalyst. Additionally, according to the in-situ Raman spectroscopy findings, the existence of CuSey facilitates a easier and faster surface reconstruction of NiSex, leading to the creation of additional active sites for urea oxidation. More significantly, this work provides an excellent "precatalyst" for highly efficient UOR, along with an in-depth understanding of the mechanism behind the structural changes in electrocatalysts and the discovery of their true active sites.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Wene Du
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Bingbing Gong
- College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Guancheng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Jiahui Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Yuying Feng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Yixuan Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| | - Li Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
- College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, P. R. China 830017
| |
Collapse
|
19
|
Huang CJ, Zhan QN, Xu HM, Zhu HR, Shuai TY, Li GR. Fe-Doped Ni 2P/NiSe 2 Composite Catalysts for Urea Oxidation Reaction (UOR) for Energy-Saving Hydrogen Production by UOR-Assisted Water Splitting. Inorg Chem 2024; 63:8925-8937. [PMID: 38683480 DOI: 10.1021/acs.inorgchem.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The development of efficient urea oxidation reaction (UOR) catalysts helps UOR replace the oxygen evolution reaction (OER) in hydrogen production from water electrolysis. Here, we prepared Fe-doped Ni2P/NiSe2 composite catalyst (Fe-Ni2P/NiSe2-12) by using phosphating-selenizating and acid etching to increase the intrinsic activity and active areas. Spectral characterization and theoretical calculations demonstrated that electrons flowed through the Ni-P-Fe-interface-Ni-Se-Fe, thus conferring high UOR activity to Fe-Ni2P/NiSe2-12, which only needed 1.39 V vs RHE to produce the current density of 100 mA cm-2. Remarkably, this potential was 164 mV lower than that required for the OER under the same conditions. Furthermore, EIS demonstrated that UOR driven by the Fe-Ni2P/NiSe2-12 exhibited faster interfacial reactions, charge transfer, and current response compared to OER. Consequently, the Fe-Ni2P/NiSe2-12 catalyst can effectively prevent competition with OER and NSOR, making it suitable for efficient hydrogen production in UOR-assisted water electrolysis. Notably, when water electrolysis is operated at a current density of 40 mA cm-2, this UOR-assisted system can achieve a decrease of 140 mV in the potential compared to traditional water electrolysis. This study presents a novel strategy for UOR-assisted water splitting for energy-saving hydrogen production.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Xu HM, Zhu HR, Zhang ZJ, Huang CJ, Shuai TY, Zhan QN, Li GR. Co/Co 3O 4 Heterojunctions Encased in Porous N-Doped Carbon Nanocapsules for High-Performance Cathode of Rechargeable Zinc-Air Batteries. Inorg Chem 2024; 63:3702-3711. [PMID: 38335057 DOI: 10.1021/acs.inorgchem.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A long-term goal of rechargeable zinc-air batteries (ZABs) has always been to design bifunctional electrocatalysts that are robust, effective, and affordable for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It has become a feasible method to construct metal/metal oxide interfaces to achieve superior electrocatalytic performance for ORR and OER by enhanced charge transfer. In this study, Co/Co3O4 heterojunctions were successfully prepared and encased in porous N-doped mesoporous carbon (Co/Co3O4@NC) via a simple condensation-carbonization-etching method. The extensive specific surface area of Co/Co3O4@NC facilitates effective interaction between the electrolyte and the catalyst, thereby enabling sufficient exposure of active sites for the ORR and the OER, consequently enhancing the rate of transport of active species. The well-designed Co/Co3O4@NC delivers superior ORR catalytic activity with a half-wave potential of 0.82 V (vs RHE) and a low overpotential of 347 mV at 10 mA cm-2 for OER in alkaline solution. The power density of Co/Co3O4@NC-based alkaline aqueous ZAB (156.5 mW cm-2) is superior to the commercial Pt/C + IrO2-based alkaline aqueous ZAB, and the cycling stability of ZAB is up to 220 h. In addition, Co/Co3O4@NC-based ZAB shows a high power density (50.1 mW cm-2). The construction of metal/metal oxide heterojunction encased in N-doped mesoporous carbon provides a novel route for the design of bifunctional electrocatalysts for high-performance ZABs.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|