1
|
Chen G, Lin G. A comprehensive understanding on droplets. Adv Colloid Interface Sci 2025; 341:103490. [PMID: 40154008 DOI: 10.1016/j.cis.2025.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Droplets are ubiquitous and necessary in natural phenomena, daily life, and industrial processes, which play a crucial role in many fields. So, the manipulation of droplets has been extensively investigated for meeting widespread applications, consequently, a great deal of progresses have been achieved across multiple disciplines ranging from chemistry to physics, material, biological, and energy science. For example, microdroplets have been utilized as reactors, colorimetric or electrochemical sensors, drug-delivery carriers, and energy harvesters. Moreover, droplet manipulation is the basis in both fundamental researches and practical applications, especially the combination of smart materials and external fields for achieving multifunctional applications of droplets. In view of this background, this review initiates discussion of the manipulation strategies of droplets including Laplace pressure, wettability gradients, electric field, magnetic force, light and temperature. Thereafter, based on their manipulation strategies, this review mainly summarizes the applications of droplets in the fields of robot, green energy, sensors, biomedical treatments, microreactors and chemical reactions. Application related basic concepts, theories, principles and progresses also have been introduced. Finally, this review addresses the challenges of manipulation and applications of droplets and provides the potential directions for their future development. By presenting these results, we aim to provide a comprehensive overview of water droplets and establish a unified framework that guides the development of droplets in various fields.
Collapse
Affiliation(s)
- Gang Chen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Guanhua Lin
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, and Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Feng H, Shen S, Jin M, Xiao M, Liu M, Zhang Q, Jiang H, Yi Z, Wu W, Zhou G, Shui L. Massive Electro-Microfluidic Particle Assembly Patterns in Droplet Array for Information Encoding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405161. [PMID: 39240036 DOI: 10.1002/smll.202405161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Indexed: 09/07/2024]
Abstract
The assembly of colloidal particles into micro-patterns is essential in optics, informatics, and microelectronics. However, it is still a challenge to achieve quick, reversible, and precise assembly patterns within micro-scale spaces like droplets. Hereby, a method is presented that utilizes in-plane dielectrophoresis to precisely manipulate particle assemblies within microscale droplets. The electro-microfluidic particle assembly platform, equipped with ingenious electrode designs, enables the formation of diverse micro-patterns within a droplet array. The tunability, similarity, stability, and reversibility of this platform are demonstrated. The ability to assemble letters, numbers, and Morse code patterns within the droplet array underscores its potential for information encoding. Furthermore, using an example with four addressing electrodes beneath a droplet, 16 distinct pieces of information through electrical stimuli is successfully encoded. This unique capability facilitates the construction of a dynamic electronic token, indicating promising applications in anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Haoqiang Feng
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shitao Shen
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjie Xiao
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjun Liu
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qilin Zhang
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hongwei Jiang
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zichuan Yi
- School of Electronic Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, P. R. China
| | - WenShuai Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Guofu Zhou
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingling Shui
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Liu M, Yang R, Guo Z, Chen K, Feng H, Lu H, Huang S, Zhang M, Ye H, Shui L. Dynamic photomask directed lithography based on electrically stimulated nematic liquid crystal architectures. Nat Commun 2024; 15:9389. [PMID: 39477920 PMCID: PMC11525641 DOI: 10.1038/s41467-024-53530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Lithography technology is a powerful tool for preparing complex microstructures through projecting patterns from static templates with permanent features onto samples. To simplify fabrication and alignment processes, dynamic photomask for multiple configurations preparation becomes increasingly noteworthy. Hereby, we report a dynamic photomask by assembling the electrically stimulated nematic liquid crystal (NLC) into multifarious architectures. This results in reconfigurable and switchable diffraction patterns due to the hybrid phase arising from the NLC molecular orientations. These diffraction patterns are adopted as metamask to produce multiple microstructures with height gradients in one-step exposure and hierarchical microstructures through multiple in-situ exposures using standard photolithography. The fabricated pattern has feature size about 3.2 times smaller than the electrode pattern and can be transferred onto silicon wafer. This strategy can be extended to design diverse microstructures with great flexibility and controllability, offers a promising avenue for fabricating metamaterials via complex structures with simplified lithography processes.
Collapse
Affiliation(s)
- Mengjun Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Ruizhi Yang
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Zhenghao Guo
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Kexu Chen
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Haoqiang Feng
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Han Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Shijian Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Huapeng Ye
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China.
- Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Liu Y, Yu L, Chen L, Chen K, Xu H, Chen M, Yi K, Li Y, Chen T, Wang F, Wang F, Zhu J, Wang F, Xiao X, Yang Y. Gradient Hydrogels Spatially Trapped Optical Cell Profiling for Quantitative Blood Cellular Osmotic Analysis. ACS Sens 2024; 9:1592-1601. [PMID: 38477713 DOI: 10.1021/acssensors.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The quantitative exploration of cellular osmotic responses and a thorough analysis of osmotic pressure-responsive cellular behaviors are poised to offer novel clinical insights into current research. This underscores a paradigm shift in the long-standing approach of colorimetric measurements triggered by red cell lysis. In this study, we engineered a purpose-driven optofluidic platform to facilitate the goal. Specifically, creating photocurable hydrogel traps surmounts a persistent challenge─optical signal interference from fluid disturbances. This achievement ensures a stable spatial phase of cells and the acquisition of optical signals for accurate osmotic response analysis at the single-cell level. Leveraging a multigradient microfluidic system, we constructed gradient osmotic hydrogel traps and developed an imaging recognition algorithm, empowering comprehensive analysis of cellular behaviors. Notably, this system has successfully and precisely analyzed individual and clustered cellular responses within the osmotic dimension. Prospective clinical testing has further substantiated its feasibility and performance in that it demonstrates an accuracy of 92% in discriminating complete hemolysis values (n = 25) and 100% in identifying initial hemolysis values (n = 25). Foreseeably, this strategy should promise to advance osmotic pressure-related cellular response analysis, benefiting further investigation and diagnosis of related blood diseases, blood quality, drug development, etc.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Keyu Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Faxi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
5
|
Jiang J, Chen X, Mei Z, Chen H, Chen J, Wang X, Li S, Zhang R, Zheng G, Li W. Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications. MICROMACHINES 2024; 15:333. [PMID: 38542580 PMCID: PMC10972061 DOI: 10.3390/mi15030333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 11/12/2024]
Abstract
Flexible devices have extensive applications in areas including wearable sensors, healthcare, smart packaging, energy, automotive and aerospace sectors, and other related fields. Droplet printing technology can be utilized to print flexible electronic components with micro/nanostructures on various scales, exhibiting good compatibility and wide material applicability for device production. This paper provides a comprehensive review of the current research status of droplet printing technologies and their applications across various domains, aiming to offer a valuable reference for researchers in related areas.
Collapse
Affiliation(s)
- Jiaxin Jiang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| | - Xi Chen
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| | - Zexing Mei
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China;
| | - Huatan Chen
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| | - Junyu Chen
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.C.); (S.L.)
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| | - Shufan Li
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.C.); (S.L.)
| | - Runyang Zhang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China; (J.J.); (X.C.); (H.C.); (X.W.); (R.Z.)
| |
Collapse
|
6
|
Shen S, Feng H, Deng Y, Xie S, Yi Z, Jin M, Zhou G, Mulvaney P, Shui L. A reflective display based on the electro-microfluidic assembly of particles within suppressed water-in-oil droplet array. LIGHT, SCIENCE & APPLICATIONS 2023; 12:290. [PMID: 38052798 DOI: 10.1038/s41377-023-01333-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create "open" and "closed" states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array. The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures. This eMAP based device can display designed information in three primary colors with ≥170° viewing angle, ~0.14 s switching time, and bistability with an optimized material system. This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display, and the display speed and color quality could be further improved by structure and material optimization; exhibiting a potential reflective display technology.
Collapse
Affiliation(s)
- Shitao Shen
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China
| | - Haoqiang Feng
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China
| | - Yueming Deng
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China
| | - Shuting Xie
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China
| | - Zichuan Yi
- School of Electronic Information, University of Electronic Science and Technology of China, Zhongshan Institute, 528402, Zhongshan, China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China
| | - Guofu Zhou
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China.
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lingling Shui
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, 510006, Guangzhou, China.
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, 510006, Guangzhou, People's Republic of China.
| |
Collapse
|