1
|
Huang X, Hou S, Li Y, Xu G, Xia N, Duan Z, Luo K, Tian B. Targeting lipid metabolism via nanomedicine: A prospective strategy for cancer therapy. Biomaterials 2025; 317:123022. [PMID: 39754967 DOI: 10.1016/j.biomaterials.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025]
Abstract
Lipid metabolism has been increasingly recognized to play an influencing role in tumor initiation, progression, metastasis, and therapeutic drug resistance. Targeting lipid metabolic reprogramming represents a promising therapeutic strategy. Despite their structural complexity and poor targeting efficacy, lipid-metabolizing drugs, either used alone or in combination with chemotherapeutic agents, have been employed in clinical practice. The advent of nanotechnology offers new approaches to enhancing therapeutic effects, includingthe targeted delivery and integration of lipid metabolic reprogramming with chemotherapy, photodynamic therapy (PDT), and immunotherapy. The integrated nanoformulation, nanomedicine, could significantly advance the field of lipid metabolism therapy. In this review, we will briefly introduce the concept of cancer lipid metabolism reprogramming, then elaborate the latest advances in engineered nanomedicine for targeting lipid metabolism during cancer treatment, and finally provide our insights into future perspectives of nanomedicine for interference with lipid metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
- Xing Huang
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shengzhong Hou
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Ning Xia
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Kui Luo
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| | - Bole Tian
- Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhen W, Zhao T, Chen X, Zhang J. Unlocking the Potential of Disulfidptosis: Nanotechnology-Driven Strategies for Advanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500880. [PMID: 40269657 DOI: 10.1002/smll.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor tissues exhibit elevated oxidative stress, with the cystine-glutamate transporter xCT solute carrier family 7 member 11 (xCT/SLC7A11) protecting cancer cells from oxidative damage by facilitating cystine uptake for glutathione synthesis. Disulfidptosis, a newly identified form of programmed cell death (PCD), occurs in cells with high xCT/SLC7A11 expression under glucose-deprived conditions. Distinct from other PCD pathways, disulfidptosis is characterized by aberrant disulfide bond formation and cellular dysfunction, ultimately resulting in cancer cell death. This novel mechanism offers remarkable therapeutic potential by targeting the inherent oxidative stress vulnerabilities of rapidly growing cancer cells. Advances in nanotechnology enable the development of nanomaterials capable of inducing reactive oxygen species (ROS) generation, disrupting disulfide bonds. In addition, they are capable to deliver therapeutic agents directly to tumors, thereby improving therapeutic precision and minimizing off-target effects. Moreover, combining disulfidptosis with ROS-induced immunogenic cell death can remodel the tumor microenvironment and enhance anti-tumor immunity. This review explores the mechanisms underlying disulfidptosis, its therapeutic potential in cancer treatment, and the synergistic role of nanotechnology in amplifying its effects. Selective induction of disulfidptosis using nanomaterials represents a promising strategy for achieving more effective, selective, and less toxic cancer therapies.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| |
Collapse
|
3
|
Zhen W, Jiang X, Li E, Germanas T, Lee MJ, Luo T, Ma X, Wang C, Chen Y, Weichselbaum RR, Lin W. Transforming malignant tumors into vulnerable phenotypes via nanoscale coordination polymer mediated cell senescence and photodynamic therapy. Biomaterials 2025; 322:123355. [PMID: 40279766 DOI: 10.1016/j.biomaterials.2025.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Induction of senescence in cancer cells can thwart the proliferation of malignant tumors. Herein we report the design of AZT-P/pyro nanoscale coordination polymer particles consisting of 3-azido-2,3-dideoxythymidine monophosphate (AZT-P) in the core and photosensitizing pyro-lipid (pyro) in the shell for potent antitumor treatment. Gradual release of AZT-P in response to an acidic tumor microenvironment transforms cancer cells with unlimited proliferation capacity into senescent cells that are vulnerable to reactive oxygen species (ROS). Pyro selectively induces ROS generation and immunogenic cell death of cancer cells upon light irradiation. Co-delivery of AZT-P and pyro in a single particle prolongs their blood circulation times and enhances their accumulation in tumors. Additionally, the induction of senescence and ROS generation both contribute to the recruitment of immune cells to the tumors, resulting in an effective immune response to inhibit the growth of large subcutaneous tumors and metastatic spread of orthotopic tumors.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - En Li
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Morten J Lee
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Taokun Luo
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Xin Ma
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Chaoyu Wang
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States
| | - Yimei Chen
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, United States; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, 5758 South Maryland Avenue, Chicago, IL, 60637, United States.
| |
Collapse
|
4
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
5
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
6
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Zhao C, Song W, Wang J, Tang X, Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chem Commun (Camb) 2025; 61:1962-1977. [PMID: 39774558 DOI: 10.1039/d4cc06510g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy, which leverages the body's immune system to recognize and attack cancer cells, has made significant progress, particularly in the treatment of metastatic tumors. However, challenges such as drug stability and off-target effects still limit its clinical success. To address these issues, metal-organic frameworks (MOFs) have emerged as promising nanocarriers in cancer immunotherapy. MOFs have unique porous structure, excellent drug loading capacity, and tunable surface modification properties. MOFs not only enhance drug delivery efficiency but also allow for precise control of drug release. They reduce off-target effects and significantly improve targeting and therapy efficacy. As research deepens, MOFs' effectiveness as drug carriers has been refined. When combined with immunoadjuvants or anticancer drugs, MOFs further stimulate the immune response. This improves the specificity of immune attacks on tumors. This review provides a comprehensive overview of the applications of MOFs in cancer immunotherapy. It focuses on synthesis, drug loading strategies, and surface modifications. It also analyzes their role in enhancing immunotherapy effectiveness. By integrating current research, we aim to provide insights for the future development of immunoadjuvant-functionalized MOFs, accelerating their clinical application for safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Jianing Wang
- School of Medical Technology, the Qiushi College, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
8
|
Yan S, Xue P, Sun Y, Bai T, Shao S, Zeng X. Cupric Doping Hollow Prussian Blue Nanoplatform for Enhanced Cholesterol Depletion: a Promising Strategy for Breast Cancer Therapy and Metastasis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409967. [PMID: 39606805 PMCID: PMC11744725 DOI: 10.1002/advs.202409967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The dysregulated cholesterol metabolism in breast cancer cells drives malignancy, invasion, and metastasis, emphasizing the significance of reducing abnormal cholesterol accumulation for effective cancer treatment and metastasis inhibition. Despite its promise, cholesterol oxidase (ChOx) encounters challenge due to limited catalytic efficiency and susceptibility to harsh conditions. To overcome these hurdles, biocompatible nanoplatforms (Cu-HPB/C) tailored for efficient cholesterol depletion are introduced. Cu2+-doped hollow Prussian blue (Cu-HPB) acts as a carrier, shelter, and enhancer for ChOx, bolstering tumor-targeting ability, stability, and enzymatic activity. Tumor-responsive released Cu2+ notably augments ChOx activity, facilitating cholesterol depletion and disrupting lipid rafts, thereby impeding cell invasion and migration. Additionally, H2O2 generated from the oxidase reaction enhances Cu-HPB's chemo dynamic therapeutic efficacy. Transcriptomic analysis validates Cu-HPB/C's impact on cholesterol homeostasis and reveals cell death mechanisms including oxidative stress, ferroptosis, cuproptosis, and apoptosis. Demonstrating therapeutic efficacy in both 4T1 tumor subcutaneous and metastasis mouse models, the study presents a direct and effective strategy for tumor therapy and metastasis inhibition through enhanced cholesterol depletion.
Collapse
Affiliation(s)
- Shuangqian Yan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Panpan Xue
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Ying Sun
- Department of GastroenterologyFuzhou No. 1 Hospital Affiliated with Fujian Medical UniversityFuzhouFujian350009P. R. China
| | - Tingjie Bai
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| | - Sijie Shao
- The Straits Institute of Flexible Electronics (SIFE, Future Technologies)Straits Laboratory of Flexible Electronics (SLoFE) Fujian Normal UniversityFuzhouFujian350117P. R. China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal University1 Keji RoadFuzhou350117P. R. China
| |
Collapse
|
9
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024; 53:11590-11656. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
10
|
Zhen W, Germanas T, Weichselbaum RR, Lin W. Multifunctional Nanomaterials Mediate Cholesterol Depletion for Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202412844. [PMID: 39146242 PMCID: PMC11534517 DOI: 10.1002/anie.202412844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Cholesterol is an essential membrane component, and the metabolites from cholesterol play important biological functions to intricately support cancer progression and dampen immune responses. Preclinical and clinical studies have demonstrated the role of cholesterol metabolism regulation on inhibiting tumor growth, remodeling the immunosuppressive tumor microenvironment (TME), and enhancing anti-tumor immunity. In this minireview, we discuss complex cholesterol metabolism in tumors, its important role in cancer progression, and its influences on immune cells in the TME. We provide an overview of recent advances in cancer treatment through regulating cholesterol metabolism. We discuss the design of cholesterol-altering multifunctional nanomaterials to regulate oxidative stress, modulate immune checkpoints, manipulate mechanical stress responses, and alter cholesterol metabolic pathways. Additionally, we examine the interactions between cholesterol metabolism regulation and established cancer treatments with the aim of identifying efficient strategies to disrupt cholesterol metabolism and synergistic combination therapies for effective cancer treatment.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
11
|
Wu J, Wang H, Gao P, Ouyang S. Pyroptosis: Induction and inhibition strategies for immunotherapy of diseases. Acta Pharm Sin B 2024; 14:4195-4227. [PMID: 39525577 PMCID: PMC11544194 DOI: 10.1016/j.apsb.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a central process for organismal health. Pyroptosis, namely pyroptotic cell death, is recognized as a critical type that disrupts membrane and triggers pro-inflammatory cytokine secretion via gasdermins, providing a robust form of cytolysis. Meanwhile, along with the thorough research, a great deal of evidence has demonstrated the dual effects of pyroptosis in host defense and inflammatory diseases. More importantly, the recent identification of abundant gasdermin-like proteins in bacteria and fungi suggests an ancient origin of pyroptosis-based regulated cell death in the life evolution. In this review, we bring a general overview of pyroptosis pathways focusing on gasdermin structural biology, regulatory mechanisms, and recent progress in induction and inhibition strategies for disease treatment. We look forward to providing an insightful perspective for readers to comprehend the frame and challenges of the pyroptosis field, and to accelerating its clinical application.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
12
|
Bai T, Xue P, Shao S, Yan S, Zeng X. Cholesterol Depletion-Enhanced Ferroptosis and Immunotherapy via Engineered Nanozyme. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405826. [PMID: 39120559 PMCID: PMC11481222 DOI: 10.1002/advs.202405826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Ferroptosis, an iron- and reactive oxygen species (ROS)-dependent cell death, holds significant promise for tumor therapy due to its ability to induce lipid peroxidation (LPO) and trigger antitumor immune responses. However, elevated cholesterol levels in cancer cells impede ferroptosis and compromise immune function. Here, a novel nanozyme, Fe-MOF/CP, composed of iron metal-organic framework (Fe-MOF) nanoparticles loaded with cholesterol oxidase and PEGylation for integrated ferroptosis and immunotherapy is introduced. Fe-MOF/CP depletes cholesterol and generates hydrogen peroxide, enhancing ROS levels and inducing LPO, thereby promoting ferroptosis. This process disrupts lipid raft integrity and downregulates glutathione peroxidase 4 and ferroptosis suppressor protein 1, further facilitating ferroptosis. Concurrently, Fe-MOF/CP augments immunogenic cell death, reduces programmed death-ligand 1 expression, and revitalizes exhausted CD8+ T cells. In vivo studies demonstrate significant therapeutic efficacy in abscopal, metastasis, and recurrent tumor models, highlighting the robust antitumor immune responses elicited by Fe-MOF/CP. This study underscores the potential of Fe-MOF/CP as a multifunctional therapeutic agent that combines ferroptosis and immunotherapy, offering a promising strategy for effective and durable cancer treatment.
Collapse
Affiliation(s)
- Tingjie Bai
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Panpan Xue
- The Straits Institute of Flexible Electronics (SIFEFuture Technologies)Straits Laboratory of Flexible Electronics (SLoFE)Fujian Normal UniversityFuzhou350117China
| | - Sijie Shao
- The Straits Institute of Flexible Electronics (SIFEFuture Technologies)Straits Laboratory of Flexible Electronics (SLoFE)Fujian Normal UniversityFuzhou350117China
| | - Shuangqian Yan
- The Straits Institute of Flexible Electronics (SIFEFuture Technologies)Straits Laboratory of Flexible Electronics (SLoFE)Fujian Normal UniversityFuzhou350117China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province UniversityBiomedical Research Center of South ChinaCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| |
Collapse
|
13
|
Zhen W, Fan Y, Germanas T, Tillman L, Li J, Blenko AL, Weichselbaum RR, Lin W. Digitonin-Loaded Nanoscale Metal-Organic Framework for Mitochondria-Targeted Radiotherapy-Radiodynamic Therapy and Disulfidptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405494. [PMID: 39252688 PMCID: PMC11891090 DOI: 10.1002/adma.202405494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/18/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of radiotherapy (RT) is limited by inefficient X-ray absorption and reactive oxygen species generation, upregulation of immunosuppressive factors, and a reducing tumor microenvironment (TME). Here, the design of a mitochondria-targeted and digitonin (Dig)-loaded nanoscale metal-organic framework, Th-Ir-DBB/Dig, is reported to overcome these limitations and elicit strong antitumor effects upon low-dose X-ray irradiation. Built from Th6O4(OH)4 secondary building units (SBUs) and photosensitizing Ir(DBB)(ppy)2 2+ (Ir-DBB, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; ppy = 2-phenylpyridine) ligands, Th-Ir-DBB exhibits strong RT-radiodynamic therapy (RDT) effects via potent radiosensitization with high-Z SBUs for hydroxyl radical generation and efficient excitation of Ir-DBB ligands for singlet oxygen production. Th-Ir-DBB/Dig releases digitonin in acidic TMEs to trigger disulfidptosis of cancer cells and sensitize cancer cells to RT-RDT through glucose and glutathione depletion. The released digitonin simultaneously downregulates multiple immune checkpoints in cancer cells and T cells through cholesterol depletion. As a result, Th-Ir-DBB/dig plus X-ray irradiation induces strong antitumor immunity to effectively inhibit tumor growth in mouse models of colon and breast cancer.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Abigail L. Blenko
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Dou Y, Wang Y, Tian S, Song Q, Deng Y, Zhang Z, Chen P, Sun Y. Metal-organic framework (MOF)-based materials for pyroptosis-mediated cancer therapy. Chem Commun (Camb) 2024; 60:6476-6487. [PMID: 38853690 DOI: 10.1039/d4cc02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pyroptosis is regarded as a promising strategy to modulate tumor immune microenvironments for anticancer therapy. Although pyroptosis inducers have been extensively explored in the biomedical field, their drug resistance, off-targeting capacity, and adverse effects do not fulfill the growing demands of therapy. Nowadays, metal-organic frameworks (MOFs) with unique structures and facile synthesis/functionalization characteristics have shown great potential in anticancer therapy. The flexible choices of metal ions and ligands endow MOFs with inherent anti-cancer efficiency, whereas the porous structures in MOFs make them ideal vehicles for delivering various chemodrug-based pyroptosis inducers. In this review, we provide the latest advances in MOF-based materials to evoke pyroptosis and give a brief but comprehensive review of the different types of MOFs for pyroptosis-mediated cancer therapy. Finally, we also discuss the current challenges of MOF-based pyroptosis inducers and their future prospects in this field.
Collapse
Affiliation(s)
- You Dou
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Shu Tian
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qiao Song
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yun Deng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Zhipeng Zhang
- College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
| | - PeiYao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
15
|
Chang M, Wang M, Liu B, Zhong W, Jana D, Wang Y, Dong S, Antony A, Li C, Liu Y, Zhao Z, Lin J, Jiang W, Zhao Y. A Cancer Nanovaccine Based on an FeAl-Layered Double Hydroxide Framework for Reactive Oxygen Species-Augmented Metalloimmunotherapy. ACS NANO 2024; 18:8143-8156. [PMID: 38436248 DOI: 10.1021/acsnano.3c11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.
Collapse
Affiliation(s)
- Mengyu Chang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Man Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Deblin Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, P. R. China
| | - Zhongqi Zhao
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77004, United States
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
16
|
Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater 2024; 33:30-45. [PMID: 38024228 PMCID: PMC10654002 DOI: 10.1016/j.bioactmat.2023.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer remains a significant global health concern, necessitating the development of innovative therapeutic strategies. This research paper aims to investigate the role of pyroptosis induction in cancer treatment. Pyroptosis, a form of programmed cell death characterized by the release of pro-inflammatory cytokines and the formation of plasma membrane pores, has gained significant attention as a potential target for cancer therapy. The objective of this study is to provide a comprehensive overview of the current understanding of pyroptosis and its role in cancer treatment. The paper discusses the concept of pyroptosis and its relationship with other forms of cell death, such as apoptosis and necroptosis. It explores the role of pyroptosis in immune activation and its potential for combination therapy. The study also reviews the use of natural, biological, chemical, and multifunctional composite materials for pyroptosis induction in cancer cells. The molecular mechanisms underlying pyroptosis induction by these materials are discussed, along with their advantages and challenges in cancer treatment. The findings of this study highlight the potential of pyroptosis induction as a novel therapeutic strategy in cancer treatment and provide insights into the different materials and mechanisms involved in pyroptosis induction.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Oncology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
17
|
Da J, Di X, Xie Y, Li J, Zhang L, Liu Y. Recent advances in nanomedicine for metabolism-targeted cancer therapy. Chem Commun (Camb) 2024; 60:2442-2461. [PMID: 38321983 DOI: 10.1039/d3cc05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metabolism denotes the sum of biochemical reactions that maintain cellular function. Different from most normal differentiated cells, cancer cells adopt altered metabolic pathways to support malignant properties. Typically, almost all cancer cells need a large number of proteins, lipids, nucleotides, and energy in the form of ATP to support rapid division. Therefore, targeting tumour metabolism has been suggested as a generic and effective therapy strategy. With the rapid development of nanotechnology, nanomedicine promises to have a revolutionary impact on clinical cancer therapy due to many merits such as targeting, improved bioavailability, controllable drug release, and potentially personalized treatment compared to conventional drugs. This review comprehensively elucidates recent advances of nanomedicine in targeting important metabolites such as glucose, glutamine, lactate, cholesterol, and nucleotide for effective cancer therapy. Furthermore, the challenges and future development in this area are also discussed.
Collapse
Affiliation(s)
- Jun Da
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - XinJia Di
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YuQi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - JiLi Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - LiLi Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| | - YanLan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
18
|
Liu Y, Niu R, Zhao H, Wang Y, Song S, Zhang H, Zhao Y. Single-Site Nanozymes with a Highly Conjugated Coordination Structure for Antitumor Immunotherapy via Cuproptosis and Cascade-Enhanced T Lymphocyte Activity. J Am Chem Soc 2024; 146:3675-3688. [PMID: 38305736 DOI: 10.1021/jacs.3c08622] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The extracellular matrix (ECM) in the tumor microenvironment (TME) and upregulated immune checkpoints (ICs) on antitumor immune cells impede the infiltration and killing effect of T cells, creating an immunosuppressive TME. Herein, a cholesterol oxidase (CHO) and lysyl oxidase inhibitor (LOX-IN-3) co-delivery copper-dibenzo-[g,p]chrysene-2,3,6,7,10,11,14,15-octaol single-site nanozyme (Cu-DBCO/CL) was developed. The conjugated organic ligand and well-distributed Cu-O4 sites endow Cu-DBCO with unique redox capabilities, enabling it to catalyze O2 and H2O2 to ·O2- and ·OH. This surge of reactive oxygen species (ROS) leads to impaired mitochondrial function and insufficient ATP supply, impacting the function of copper-transporting ATPase-1 and causing dihydrolipoamide S-acetyltransferase oligomerization-mediated cuproptosis. Moreover, multiple ROS storms and glutathione peroxidase 4 depletion also induce lipid peroxidation and trigger ferroptosis. Simultaneously, the ROS-triggered release of LOX-IN-3 reshapes the ECM by inhibiting lysyl oxidase activity and further enhances the infiltration of cytotoxic T lymphocytes (CD8+ T cells). CHO-triggered cholesterol depletion not only increases ·OH generation but also downregulates the expression of ICs such as PD-1 and TIM-3, restoring the antitumor activity of tumor-infiltrating CD8+ T cells. Therefore, Cu-DBCO/CL exhibits efficient properties in activating a potent antitumor immune response by cascade-enhanced CD8+ T cell viability. More importantly, ECM remodeling and cholesterol depletion could suppress the metastasis and proliferation of the tumor cells. In short, this immune nanoremodeler can greatly enhance the infiltration and antitumor activity of T cells by enhancing tumor immunogenicity, remodeling ECM, and downregulating ICs, thus achieving effective inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Huan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|