1
|
Wang S, Wang X, Xia J, Mu Q. Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning. Sci Rep 2025; 15:12525. [PMID: 40216945 PMCID: PMC11992169 DOI: 10.1038/s41598-025-96917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screened the differentially expressed genes from The Cancer Genome Atlas-Breast cancer database and analyzed the relationship between immune cell infiltration and differentially expressed genes using weighted gene co-expression network analysis. By constructing a module-trait relationships heatmap, the red module, which had the highest correlation value with M1 macrophages, was selected. Twenty hub genes were selected based on a protein-protein interaction network. Then, four overlapping M1 macrophage infiltration-related genes (M1 MIRGs), namely CCDC69, PPP1R16B, IL21R, and FOXP3, were obtained using five machine-learning algorithms. Subsequently, nomogram models were constructed to predict the incidence of Her2-positive breast cancer patients. The outer datasets and receiver operating characteristic curve analysis were used to validate the accuracy of the four M1 MIRGs and nomogram models. The average value of the area under the curve for the nomogram models was higher than 0.75 in both the training and testing sets. After that, survival analysis showed that higher expression of CCDC69, PPP1R16B, and IL21R were associated with overall survival of Her2-positive breast cancer patients. The expression of CCDC69 and PPP1R16B could lead to more benefits than the expression of IL21R and FOXP3 for immunotherapy. Lastly, we conducted immunohistochemistry staining to validate the aforementioned results. In conclusion, we found four M1 MIRGs that may be helpful for the diagnosis, prognosis, and immunotherapy of Her2-positive breast cancer.
Collapse
Affiliation(s)
- Sizhang Wang
- Qingdao Medical College of Qingdao University, Qingdao, 266042, Shandong, China
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Xiaoyan Wang
- General Practice Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Jing Xia
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China
| | - Qiang Mu
- Department of Breast surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, Shandong, China.
| |
Collapse
|
2
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Qu F, Wang G, Wen P, Liu X, Zeng X. Knowledge mapping of immunotherapy for breast cancer: A bibliometric analysis from 2013 to 2022. Hum Vaccin Immunother 2024; 20:2335728. [PMID: 38563136 PMCID: PMC10989689 DOI: 10.1080/21645515.2024.2335728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women globally. Immunotherapy has emerged as a major milestone in contemporary oncology. This study aims to conduct a bibliometric analysis in the field of immunotherapy for breast cancer, providing a comprehensive overview of the current research status, identifying trends and hotspots in research topics. We searched and retrieved data from the Web of Science Core Collection, and performed a bibliometric analysis of publications on immunotherapy for breast cancer from 2013 to 2022. Current status and hotspots were evaluated by co-occurrence analysis using VOSviewer. Evolution and bursts of knowledge base were assessed by co-citation analysis using CiteSpace. Thematic evolution by bibliometrix package was used to discover keywords trends. The attribution and collaboration of countries/regions, institutions and authors were also explored. A total of 7,975 publications were included. In co-occurrence analysis of keywords, 6 major clusters were revealed: tumor microenvironment, prognosis biomarker, immune checkpoints, novel drug delivery methods, immune cells and therapeutic approaches. The top three most frequently mentioned keywords were tumor microenvironment, triple-negative breast cancer, and programmed cell death ligand 1. The most productive country, institution and author were the USA (2926 publications), the University of Texas MD Anderson Cancer Center (219 publications), and Sherene Loi (28 publications), respectively. There has been a rapid growth in studies on immunotherapy for breast cancer worldwide. This research area has gained increasing attention from different countries and institutions. With the rising incidence of breast cancer, immunotherapy represents a research field of significant clinical value and potential.
Collapse
Affiliation(s)
- Fanli Qu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Ping Wen
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Liu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Chen Y, Mao K, Han D, Ma R, Sun T, Zhang H, Han B. Nanomedicine based on chemotherapy-induced immunogenic death combined with immunotherapy to enhance antitumor immunity. Front Pharmacol 2024; 15:1511423. [PMID: 39697556 PMCID: PMC11652165 DOI: 10.3389/fphar.2024.1511423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Chemo-immunotherapy based on inducing tumor immunogenic cell death (ICD)with chemotherapy drugs has filled the gaps between traditional chemotherapy and immunotherapy. It is verified that paclitaxel (PTX) can induce breast tumor ICD. From this basis, a kind of nanoparticle that can efficiently deliver different drug components simultaneously is constructed. The purpose of this study is for the sake of exploring the scheme of chemotherapy-induced ICD combined with other immunotherapy to enhance tumor immunogenicity and inhibit the growth, metastasis, and recurrence of breast tumors, so as to provide a research basis for solving the tough problem of breast cancer treatment. Methods Nanomedicine loaded with PTX, small interference RNA that suppresses CD47 expression (CD47siRNA, siCD47), and immunomodulator R848 were prepared by the double emulsification method. The hydrodynamic diameter and zeta potential of NP/PTX/siCD47/R848 were characterized. Established the tumor-bearing mice model of mouse breast cancer cell line (4T1) in situ and observed the effect of intravenous injection of NP/PTX/siCD47/R848 on the growth of 4T1 tumor in situ. Flow cytometry was used to detect the effect of drugs on tumor immune cells. Results NP/PTX/siCD47/R848 nano-drug with tumor therapeutic potential were successfully prepared by double emulsification method, with particle size of 121.5 ± 4.5 nm and surface potential of 36.1 ± 2.5 mV. The calreticulin on the surface of cell membrane and extracellular ATP or HMGB1 of 4T1 cells increased through treatment with NPs. NP/PTX-treated tumor cells could cause activation of BMDCs and BMDMs. After intravenous injection, NP/PTX could quickly reach the tumor site and accumulate for 24 h. The weight and volume of tumor in situ in the breast cancer model mice injected with nanomedicine through the tail vein were significantly lower than those in the PBS group. The ratio of CD8+/CD4+ T cells in the tumor microenvironment and the percentage of dendritic cells in peripheral blood increased significantly in breast cancer model mice injected with nano-drugs through the tail vein. Discussion Briefly, the chemotherapeutic drug paclitaxel can induce breast cancer to induce ICD. The nanomedicine which can deliver PTX, CD47siRNA, and R848 at the same time was prepared by double emulsification. NP/PTX/siCD47/R848 nano-drug can be enriched in the tumor site. The experiment of 4T1 cell tumor-bearing mice shows that the nano-drug can enhance tumor immunogenicity and inhibit breast tumor growth, which provides a new scheme for breast cancer treatment. (Graphical abstract).
Collapse
Affiliation(s)
- Yichang Chen
- Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Dongxiao Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Ruolin Ma
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Institute of Immunology, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Haipeng Zhang
- Department of Gynecology, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, China
| | - Bing Han
- Department of Breast Surgery, General Surgery Center of The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
6
|
Tang Y, Zhang J, Yuan Y, Shen K, Luo Z, Jia L, Long X, Peng C, Xie T, Chen X, Zhang P. Synergistic Gas Therapy and Targeted Interventional Ablation With Size-Controllable Arsenic Sulfide (As 2S 3) Nanoparticles for Effective Elimination of Localized Cancer Pain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407197. [PMID: 39358955 DOI: 10.1002/smll.202407197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Indexed: 10/04/2024]
Abstract
The elimination of localized cancer pain remains a globally neglected challenge. A potential solution lies in combining gas therapy with targeted interventional ablation therapy. In this study, HA-As2S3 nanoparticles with controlled sizes are synthesized using different molecular weights of sodium hyaluronate (HA) as a supramolecular scaffold. Initially, HA co-assembles with arsenic ions (As3+) via coordinate bonds, forming HA-As3+ scaffold intermediates. These intermediates, varying in size, then react with sulfur ions to produce size-controlled HA-As2S3 particles. This approach demonstrates that different molecular weights of HA enable precise control over the particle size of arsenic sulfide, offering a straightforward and environmentally friendly method for synthesizing metal sulfide particles. In an acidic environment, HA-As2S3 nanoparticles release hydrogen sulfide(H2S) gas and As3+. The released As3+ directly damage tumor mitochondria, leading to substantial reactive oxygen species (ROS) production from mitochondria. Concurrently, the H2S gas inhibits the activity of catalase (CAT) and complex IV, preventing the beneficial decomposition of ROS and disrupting electron transfer in the mitochondrial respiratory chain. Consequently, it is found that H2S gas significantly enhances the mitochondrial damage induced by arsenic nanodrugs, effectively killing local tumors and ultimately eliminating cancer pain in mice.
Collapse
Affiliation(s)
- Yu Tang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Jiyun Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Yuan Yuan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Kele Shen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Zhiyuan Luo
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Luyu Jia
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaofeng Long
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Chi Peng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China
| |
Collapse
|
7
|
Chen C, Xie B, Sun S, Guo S, Yang Z, Yang L, Zhang Y, Li SA, Sun W, Wang Z, Qin S, Ji Y. Bovine serum albumin-bound homologous targeted nanoparticles for breast cancer combinatorial therapy. Int J Biol Macromol 2024; 281:136090. [PMID: 39343270 DOI: 10.1016/j.ijbiomac.2024.136090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Breast cancer, the most common lethal cancer among women, is characterized by the uncontrolled growth of abnormal cells in breast tissue. Therefore, synergistic anticancer strategies are essential, particularly for maximizing drug delivery to tumor sites. Herein, bovine serum albumin (BSA)-bound nanoparticles encapsulating the photosensitizer chlorin e6 (Ce6) (BC) with a CuO2 core (BC/CuO2 NPs) were developed for cuproptosis-promoted cancer photodynamic therapy (PDT). The cancer cell membrane (CC) was then coated onto the surfaces to produce BC/CuO2@CC NPs for breast cancer combinatorial therapy. BSA serves dual functions as both a stabilizing scaffold for metal peroxide nanomaterials and a molecular connector for Ce6. The BC/CuO2@CC NPs group showed the stronger internalization capability than the other groups. BC/CuO2@CC NPs could effectively induce the greatest degree of apoptosis and death ratio (81.77 %), and lead to cuproptosis by downregulating the expression of DLAT, LIAS, and FDX1 protein in vitro. The intra-tumoral accumulation of BC/CuO2@CC NPs was 8.3- and 7.7-fold higher than that of Ce6 and BC/CuO2@CC NPs at 24 h postinjection, respectively. Moreover, synergistic efficacy of cuproptosis and PDT not only inhibited tumor growth but also prevented liver metastases. Thus, our work may be a novel approach for efficient and targeted cancer treatment.
Collapse
Affiliation(s)
- Caili Chen
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China; Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Bohong Xie
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shuming Sun
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Liuzhong Yang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Yana Zhang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zihao Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shuang Qin
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China.
| | - Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China.
| |
Collapse
|
8
|
Minko T, Taratula O. Nanomedicine for Women's Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405178. [PMID: 39032120 DOI: 10.1002/smll.202405178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 07/22/2024]
Affiliation(s)
- Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
9
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
10
|
Chen C, Yuan P, Zhang Z. Nanomedicine-based cancer immunotherapy: a bibliometric analysis of research progress and prospects. Front Immunol 2024; 15:1446532. [PMID: 39247199 PMCID: PMC11377264 DOI: 10.3389/fimmu.2024.1446532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Despite the increasing number of studies on nanomedicine-based cancer immunotherapy, the overall research trends in this field remain inadequately characterized. This study aims to evaluate the research trends and hotspots in nanomedicine-based cancer immunotherapy through a bibliometric analysis. As of March 31, 2024, relevant publications were retrieved from the Web of Science Core Collection. Analytical tools including VOSviewer, CiteSpace, and an online bibliometric analysis platform were employed. A total of 5,180 publications were analyzed. The study reveals geographical disparities in research output, with China and the United States being the leading contributors. Institutionally, the Chinese Academy of Sciences, University of Chinese Academy of Sciences, and Sichuan University are prominent contributors. Authorship analysis identifies key researchers, with Liu Zhuang being the most prolific author. "ACS Nano" and the "Journal of Controlled Release and Biomaterials" are identified as the leading journals in the field. Frequently occurring keywords include "cancer immunotherapy" and "drug delivery." Emerging frontiers in the field, such as "mRNA vaccine," "sonodynamic therapy," "oral squamous cell carcinoma," "STING pathway,"and "cGAS-STING pathway," are experiencing rapid growth. This study aims to provide new insights to advance scientific research and clinical applications in nanomedicine-based cancer immunotherapy.
Collapse
Affiliation(s)
- Chaofan Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfei Yuan
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
11
|
Guo H, Hou Y, Wang C, Ding J. How to optimize the immune checkpoint blockade therapy for cancers? ONCOLOGIE 2024; 26:343-348. [DOI: 10.1515/oncologie-2024-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
The realm of cancer therapy has been profoundly altered with the emergence of immune checkpoint blockade (ICB) therapy, providing improved survival prospects for many patients with some cancers. However, the challenge of achieving efficient or sustained therapeutic benefits underscores the critical imperative to optimize ICB strategies. This review elucidates the pivotal role of predictive biomarkers in optimizing precision ICB therapy, deciphering the intricate dynamics associated with the response heterogeneity. Furthermore, it critically examines the application of nanotechnology-driven drug delivery as a promising avenue to amplify ICB efficacy, facilitating controlled and targeted drug release. Recognizing the comprehensive and dynamic interplay among tumor cells, immune cells, and stromal cells has catalyzed the transformative advances in reverse translational research. This approach enables researchers to gain insights into the underlying mechanisms of ICB therapy, therapeutic responses, and resistance mechanisms. The convergence of predictive biomarkers, revolutionary nanotechnology, and reverse translational research emerges as an indispensable focal point, propelling the frontiers of precision oncology within the complex landscape of ICB therapy.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , China
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Yuchuan Hou
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Chunxi Wang
- Department of Urinary , 117971 The First Hospital of Jilin University , Changchun , China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , China
| |
Collapse
|
12
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|