1
|
Yuan W, Huang T, Zhou J, Tang MC, Zhang D, Duan L. High-efficiency and long-lifetime deep-blue phosphorescent OLEDs using deuterated exciplex-forming host. Nat Commun 2025; 16:4446. [PMID: 40360499 PMCID: PMC12075503 DOI: 10.1038/s41467-025-59583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
A suitable host material is pivotal for efficient and stable deep-blue phosphorescent organic light-emitting diodes (PhOLEDs). Here, we construct a deuterated exciplex-forming host with improved molecular stability and charge transport and firstly unveil an "external deuteration effect" on dopant, which reduces the shoulder emissions for slightly blue-shifted colours and also accelerates the radiative decay rates for improved photoluminescence efficiency. The corresponding deep-blue PhOLEDs based on two platinum complexes, PtON-TBBI and PtON-tb-DTB, achieve lower operational voltages and higher maximum external quantum efficiencies of 27.4/19.9% and power efficiency of 41.2/33.6 lm/W, respectively, compared to the hydrogen-based counterparts. Moreover, lifetimes of 370 and 557 h to reach 90% of the initial luminance of 1000 cd/m2 with Commission Internationale de l'Eclairage coordinates of (0.148, 0.165) and (0.153, 0.213) are achieved, 1.6 and 1.4 times longer than the ones based on the non-deuterated hosts with even blue-shifted colours.
Collapse
Affiliation(s)
- Wenbo Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Huang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianping Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Li H, Hung FF, Wu S, Qiu J, Li C, Nie S, Yang J, Duan L, Zhou P, Cheng G, Che CM. Deep Blue Tetradentate Pt(II) Emitter Coordinated With Fused Fluorenyl N-heterocyclic Carbene. High Efficiency, Narrow FWHM, and Superior Operational Lifetime LT 95 of 290 h at 1000 cd m -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409662. [PMID: 39916566 PMCID: PMC11922001 DOI: 10.1002/smll.202409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/11/2025] [Indexed: 03/20/2025]
Abstract
Blue tetradentate Pt(II) emitters and the corresponding organic light-emitting diodes (OLEDs) are promising for next-generation high-resolution displays. However, developing blue Pt(II) emitters that simultaneously achieve high efficiency, high color purity, and excellent operational stability remains challenging. In this study, we developed two new high-performance deep blue tetradentate Pt(II) emitters (Pt1 and Pt2) whose ligands contain 1-(3,5-di-tert-butylphenyl)-9,9-dimethyl-1,9-dihydrofluoreno[2,3-d]imidazolium or 3-(3,5-di-tert-butylphenyl)-9,9-dimethyl-3,9-dihydrofluoreno[2,3-d]imidazolium carbene moiety (DMFI). These Pt(II) emitters display excellent photophysical characteristics including high photoluminescence quantum yield (PLQY) of up to 0.90, narrow full width at half maximum (FWHM), short emission lifetime, and high horizontal transition dipole ratio of up to 0.80. As a result, deep blue phosphorescent OLEDs are fabricated with a narrow FWHM of 21 nm, a high maximum external quantum efficiency (EQEmax) of 28.6%, and Commission Internationale de l'Éclairage (CIE) coordinates of (0.13, 0.15). Even more impressively, the devices based on the deuterated co-host system and different device structures achieved an unprecedented excellent device lifetime LT95 of 290 h at an initial luminance of 1000 cd m-2, an EQEmax of 20.8%, and CIE coordinates of (0.14, 0.17).
Collapse
Affiliation(s)
- Huiyang Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
| | - Jiangzhen Qiu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Cuijin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Shaowei Nie
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jun Yang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Zhou
- Guangdong Shunde Innovative Design Institute, Foshan, 528300, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Hong Kong Quantum AI Lab Limited, Units 909-915, Building 17 W, 17 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
| |
Collapse
|
3
|
Tatoueix K, Lepron M, Barboux C, Scherrmann MC, Pieters G, Feuillastre S. Unlocking the potential of hydrogen deuterium exchange via an iterative continuous-flow deuteration process. Nat Commun 2025; 16:1314. [PMID: 39900624 PMCID: PMC11791062 DOI: 10.1038/s41467-025-56600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Labelled compounds bearing hydrogen isotopes are keystones in diverse areas constituting a multi-billion dollar global market including drugs, diagnostics, biology, toxicology and smart materials. While hydrogen deuterium exchange (HDE) methods hold promise as relevant tools for the late-stage and one-step preparation of deuterium-labelled compounds, they often fall short in achieving sufficient isotopic purity combined either with a site-selectivity or with a full deuteration process, highlighting the need for further development and optimisation. This report pinpoints an approach to unlock the potential of HDE using the concept of iterative runs in continuous-flow technology (recirculation process). This closed-loop process grants access now to deuterated compounds with high isotopic purities, labelled at a precise site or perdeuterated on demand, in a fast, productive, and environmentally friendly way.
Collapse
Affiliation(s)
- Kevin Tatoueix
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Marco Lepron
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Cédric Barboux
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | | | - Grégory Pieters
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Tschopp MS, Tortajada A, Hevia E. Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO. Angew Chem Int Ed Engl 2025:e202421736. [PMID: 39804795 DOI: 10.1002/anie.202421736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Dedicated to Proferssor Robert E. Mulvey on the occasion of his 65th birthday. Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, so expensive, and often exhibit high toxicity. Therefore, alternative transition-metal-free protocols would be a welcome addition to this field. In this report we show how the simple bases NaHMDS (HMDS=hexamethyldisilazide) and NaCH2SiMe3 can efficiently and selectively promote deuteration of a wide range of C(sp2)-H and C(sp3)-H bonds in DMSO-d6, providing an easy and direct access to deuterated compounds. Heterocycles, fluoroarenes, N-heterocyclic carbenes, amides and other aromatic molecules could be deuterated under mild conditions using catalytic amounts of base. Mechanistic studies along with the isolation and characterisation of reaction intermediates have flagged up the importance of the metalated substrate and metalated solvent in solution, establishing an equilibrium between these compounds is crucial for the success of this approach. An alkali-metal effect was observed, with heavier alkali-metal amides being more reactive at room temperature, but their lower stability at higher temperatures made sodium bases the optimal reagents for Hydrogen Isotope Exchange.
Collapse
Affiliation(s)
- Melina S Tschopp
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
5
|
Jhun BH, Park Y, Kim HS, Baek JH, Kim J, Lee E, Moon H, Oh C, Jung Y, Choi S, Baik MH, You Y. The degradation mechanism of multi-resonance thermally activated delayed fluorescence materials. Nat Commun 2025; 16:392. [PMID: 39755694 DOI: 10.1038/s41467-024-55620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules. Electroluminescent devices incorporating these compounds display varied operational lifetimes, uncorrelated with excitonic stability or external quantum efficiency roll-off. Bulk electrolysis reveals significant instability in the radical cationic forms of MR-TADF compounds, with device lifetime linked to the Faradaic yield of oxidation. Comprehensive chemical analyses corroborate that the degradation byproducts originated from intramolecular cyclization of radical cation, followed by hydrogen atom transfer. The mechanism is further supported by enhanced stability observed in a deuterated MR-TADF emitter, attributed to a secondary kinetic isotope effect. These findings provide insights into the stabilizing effects of deuteration and mechanism-driven strategies for designing MR-TADF compounds with improved operational longevity.
Collapse
Affiliation(s)
- Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hwang Suk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Ji Hye Baek
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Eunji Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyejin Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changjin Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
| | - Seunghee Choi
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Liu J, Yin X, Huang M, Miao J, Li N, Huang Z, Yang C. High-Performance Narrowband Pure-Green OLEDs with Gamut Approaching BT.2020 Standard: Deuteration Promotes Device Efficiency and Lifetime Simultaneously. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411610. [PMID: 39588850 DOI: 10.1002/adma.202411610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
In order to fulfill the demand for ultrahigh definition organic light-emitting diodes (OLEDs), pure-green emitters with Commission Internationale de l'Éclairage (CIE) y-coordinate over 0.71 are in urgent demand. Meanwhile, the high device efficiency, small efficiency roll-off, and operational lifetime also remain challenging issues. In this work, a series of narrowband pure-green fluorescent emitters based on a double-boron (B) doped polycyclic aromatic hydrocarbons (PAHs) framework fused with naphthalene units is reported. The newly designed emitters realize green emission with peaks of 512-521 nm and extremely narrow full-width at half-maxima (FWHMs) of 16-17 nm in toluene solution. Utilizing these emitters in a phosphor-sensitized fluorescence (PSF) system, the resulting OLEDs exhibit pure green emission with peaks in the range of 514-526 nm and very narrow FWHMs of 19-20 nm. Notably, the devices based on the partially deuterated emitter, DBN-NaPh-d, not only achieve a maximum external quantum efficiency (EQEmax) as high as 35.2%, small efficiency roll-off, along with a CIEy of 0.74 but also showcase impressive operational stability with a long lifetime (LT50) of over 3000 h at an initial luminance of 1000 cd m-2. This work represents one of the highest device efficiencies and superior device stability among fluorescence emitter-based OLEDs.
Collapse
Affiliation(s)
- Jiahui Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Manli Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
7
|
Teja C, Kolb S, Colonna P, Grover J, Garcia-Argote S, Lahiri GK, Pieters G, Werz DB, Maiti D. Deuteration and Tritiation of Pharmaceuticals by Non-Directed Palladium-Catalyzed C-H Activation in Heavy and Super-Heavy Water. Angew Chem Int Ed Engl 2024; 63:e202410162. [PMID: 39109510 DOI: 10.1002/anie.202410162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 10/18/2024]
Abstract
Deuterated and tritiated analogs of drugs are valuable compounds for pharmaceutical and medicinal chemistry. In this work, we present a novel hydrogen isotope exchange reaction of drugs using non-directed homogeneous Pd-catalysis. Aromatic C-H activation is achieved by a commercially available pyridine ligand. Using the most convenient and cheapest deuterium source, D2O, as the only solvent 39 pharmaceuticals were labelled with clean reaction profiles and high deuterium uptakes. Additionally, we describe the first application of non-directed homogeneous Pd-catalysis for H/T exchange on three different pharmaceuticals by using T2O as isotopic source, demonstrating the applicability to the synthesis of radiotracers.
Collapse
Affiliation(s)
- Chitrala Teja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Simon Kolb
- Albert-Ludwigs University Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg, Germany
| | - Pierre Colonna
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Sébastien Garcia-Argote
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Grégory Pieters
- Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Daniel B Werz
- Albert-Ludwigs University Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
8
|
Zheng C, Xue J, Jiang ZJ, Han J, Wang J, Bai JF, Chen J, Gao Z. Geometric constraints regulated regioselectivity: Pd-catalyzed α-deuteration of pyridines with secondary phosphine oxide. Chem Commun (Camb) 2024; 60:10338-10341. [PMID: 39212444 DOI: 10.1039/d4cc03089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A Pd-catalyzed regioselective H/D exchange at the α-position of pyridines was achieved by employing secondary phosphine oxide as an internal base. The proposed five-membered structure enabled the reaction to overcome its conventional ortho-directing feature, allowing the efficient deuteration of pyridines and quinolines at adjacent sites of N-atoms.
Collapse
Affiliation(s)
- Chenxu Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiben Xue
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jiawei Han
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaxin Wang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China
| |
Collapse
|
9
|
Kaga A, Saito H, Yamano M. Divergent and chemoselective deuteration of N-unsubstituted imidazoles enabled by precise acid/base control. Chem Commun (Camb) 2024; 60:8920-8923. [PMID: 39092668 DOI: 10.1039/d4cc02471k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Herein, we report acid/base-controlled and divergent deuteration of N-unsubstituted imidazoles in an imidazole-selective manner. This protocol enabled the deuteration of not only the 4-arylimidazoles but also the 2-arylimidazoles without labelling the aromatic rings. We demonstrated the advantages of this protocol by the synthesis of deuterated pharmaceuticals, which is difficult to achieve by means of transition metals.
Collapse
Affiliation(s)
- Atsushi Kaga
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Hayate Saito
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Mitsuhisa Yamano
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| |
Collapse
|
10
|
Kamio S, Okamoto K, Yamagishi T, Nagaki A. Synthesis of Deuterated Compounds by Flow Chemistry. Chempluschem 2024; 89:e202300744. [PMID: 38450881 DOI: 10.1002/cplu.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Development of the efficient and practical method for the synthesis of deuterated compounds which occupies the broadest area among stable isotopes is one of the most essential issues toward the industrial advance and building a sustainable society. This review describes recent advances in deuteration reactions, where the continuous flow chemistry plays pivotal roles for the successful installation of deuterium atom into diverse organic frameworks, opening new fields of isotope-based synthetic chemistry.
Collapse
Affiliation(s)
- Shintaro Kamio
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| | - Takehiro Yamagishi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| |
Collapse
|
11
|
Wang SF, Zhou DY, Kuo KH, Wang CH, Hung CM, Yan J, Liao LS, Hung WY, Chi Y, Chou PT. Effects of Deuterium Isotopes on Pt(II) Complexes and Their Impact on Organic NIR Emitters. Angew Chem Int Ed Engl 2024; 63:e202317571. [PMID: 38230818 DOI: 10.1002/anie.202317571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.
Collapse
Affiliation(s)
- Sheng-Fu Wang
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Dong-Ying Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Kai-Hua Kuo
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
| | - Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Kowloon, Hong Kong
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, 20224, Keelung, Taiwan
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 999077, Kowloon, Hong Kong
| | - Pi-Tai Chou
- Department of Chemistry, Center for Emerging Materials and Advanced Devices, National Taiwan University, 106319, Taipei, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taiwan
| |
Collapse
|
12
|
Jung S, Cheung WL, Li SJ, Wang M, Li W, Wang C, Song X, Wei G, Song Q, Chen SS, Cai W, Ng M, Tang WK, Tang MC. Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds. Nat Commun 2023; 14:6481. [PMID: 37838720 PMCID: PMC10576749 DOI: 10.1038/s41467-023-42019-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
The realization of operationally stable blue organic light-emitting diodes is a challenging issue across the field. While device optimization has been a focus to effectively prolong device lifetime, strategies based on molecular engineering of chemical structures, particularly at the subatomic level, remains little. Herein, we explore the effect of targeted deuteration on donor and/or acceptor units of thermally activated delayed fluorescence emitters and investigate the structure-property relationship between intrinsic molecular stability, based on isotopic effect, and device operational stability. We show that the deuteration of the acceptor unit is critical to enhance the photostability of thermally activated delayed fluorescence compounds and hence device lifetime in addition to that of the donor units, which is commonly neglected due to the limited availability and synthetic complexity of deuterated acceptors. Based on these isotopic analogues, we observe a gradual increase in the device operational stability and achieve the long-lifetime time to 90% of the initial luminance of 23.4 h at the luminance of 1000 cd m-2 for thermally activated delayed fluorescence-sensitized organic light-emitting diodes. We anticipate our strategic deuteration approach provides insights and demonstrates the importance on structural modification materials at a subatomic level towards prolonging the device operational stability.
Collapse
Affiliation(s)
- Sinyeong Jung
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, 518055, Shenzhen, China
| | - Wai-Lung Cheung
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Si-Jie Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Min Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wansi Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Cangyu Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xiaoge Song
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Guodan Wei
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, 518055, Shenzhen, China.
| | - Qinghua Song
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Season Si Chen
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518005, Shenzhen, China.
| | - Wanqing Cai
- Faculty of Materials Science, MSU-BIT University, 518172, Shenzhen, China
| | - Maggie Ng
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wai Kit Tang
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| |
Collapse
|
13
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Wei YC, Kuo KH, Chi Y, Chou PT. Efficient Near-Infrared Luminescence of Self-Assembled Platinum(II) Complexes: From Fundamentals to Applications. Acc Chem Res 2023; 56:689-699. [PMID: 36882976 DOI: 10.1021/acs.accounts.2c00827] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
ConspectusDesigning bright and efficient near-infrared (NIR) emitters has drawn much attention due to numerous applications ranging from biological imaging, medical therapy, optical communication, and night-vision devices. However, polyatomic organic and organometallic molecules with energy gaps close to the deep red and NIR regime are subject to dominant nonradiative internal conversion (IC) processes, which drastically reduces the emission intensity and exciton diffusion length of organic materials and hence hampers the optoelectronic performances. To suppress nonradiative IC rates, we suggested two complementary approaches to solve the issues: exciton delocalization and molecular deuteration. First, exciton delocalization efficiently suppresses the molecular reorganization energy through partitioning to all aggregated molecules. According to the IC theory together with the effect of exciton delocalization, the simulated nonradiative rates with the energy gap ΔE = 104 cm-1 decrease by around 104 fold when the exciton delocalization length equals 5 (promoting vibronic frequency ωl = 1500 cm-1). Second, molecular deuterations reduce Franck-Condon vibrational overlaps and vibrational frequencies of promoting modes, which decreases IC rates by 1 order of magnitude in comparison to the rates of nondeuterated molecules under ΔE of 104 cm-1. Although deuteration of molecules has long been attempted to increase emission intensity, the results have been mixed. Here, we provide a robust derivation of the IC theory to demonstrate its validity, especially to emission in the NIR region.The concepts are experimentally verified by the strategic design and synthesis of a class of square-planar Pt(II) complexes, which form crystalline aggregates in vapor deposited thin films. The packing geometries are well characterized by the grazing angle X-ray diffraction (GIXD), showing domino-like packing arrangements with the short ππ separation of 3.4-3.7 Å. Upon photoexcitation, such closely packed assemblies exhibit intense NIR emission maximized in the 740-970 nm region through metal-metal-to-ligand charge transfer (MMLCT) transition with unprecedented photoluminescent quantum yield (PLQY) of 8-82%. To validate the existence of exciton delocalization, we applied time-resolved step-scan Fourier transform UV-vis spectroscopy to probe the exciton delocalization length of Pt(II) aggregates, which is 5-9 molecules (2.1-4.5 nm) assuming that excitons mainly delocalized along the direction of ππ stacking. According to the dependence of delocalization length vs simulated IC rates, we verify that the observed delocalization lengths contribute to the high NIR PLQY of the aggregated Pt(II) complexes. To probe the isotope effect, both partially and completely deuterated Pt(II) complexes were synthesized. For the case of the 970 nm Pt(II) emitter, the vapor deposited films of per-deuterated Pt(II) complexes exhibit the same emission peak as that of the nondeuterated one, whereas PLQY increases ∼50%. To put the fundamental studies into practice, organic light-emitting diodes (OLEDs) were fabricated with a variety of NIR Pt(II) complexes as the emitting layer, showing the outstanding external quantum efficiencies (EQEs) of 2-25% and the remarkable radiances 10-40 W sr-1 m-2 at 740-1002 nm. The prominent device performances not only successfully prove our designed concept but also reach a new milestone for highly efficient NIR OLED devices.This Account thus summarizes our approaches about how to boost the efficiency of the NIR emission of organic molecules from an in-depth fundamental basis, i.e., molecular design, photophysical characterization, and device fabrication. The concept of the exciton delocalization and molecular deuteration may also be applicable to a single molecular system to achieve efficient NIR radiance, which is worth further investigation in the future.
Collapse
Affiliation(s)
- Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Kai-Hua Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon Tong, 999077 Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| |
Collapse
|
15
|
Yao J, Dong SC, Tam BST, Tang CW. Lifetime Enhancement and Degradation Study of Blue OLEDs Using Deuterated Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7255-7262. [PMID: 36701227 DOI: 10.1021/acsami.2c22882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant lifetime enhancement, up to an eight-fold increase in T90, has been demonstrated in blue organic light-emitting diode (OLED) devices through the deuteration of host and hole transport materials. We observed a progressive increase in T90 using a series of anthracene-based hydrocarbon hosts with incremental deuteration in the emitting layer. In addition, we realized further lifetime improvement using a deuterated hole-transport layer along with the deuterated emitting layer. To elucidate the deuteration effects, we utilized laser desorption/ionization-time-of-flight (LDI-TOF) mass spectrometry for in situ UV irradiation to induce photodegradation and immediate chemical analysis of the resultant photodegradation species. Adducts between the host and moieties from transport materials were identified in UV-degraded films comprising a mixture of host and transport materials, indicating that similar species could be produced in OLED devices using these materials. Deuteration, in effect, mediated the formation of these adduct species, presumably electroluminescence quenchers, and thus improved the device lifetime. An approximate agreement was obtained between the kinetic isotope effect of the photodegradation reactions and the enhancement in device lifetime with deuteration.
Collapse
Affiliation(s)
- Jingwen Yao
- Institute for Advanced Study, Hong Kong University of Science Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shou-Cheng Dong
- Institute for Advanced Study, Hong Kong University of Science Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bryan Siu Ting Tam
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ching W Tang
- Institute for Advanced Study, Hong Kong University of Science Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
16
|
Lin ZH, Yao YF, Zhang CP. Deuteration of Arylthianthren-5-ium Salts in CD 3OD. Org Lett 2022; 24:8417-8422. [DOI: 10.1021/acs.orglett.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeng-Hui Lin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yu-Fei Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
17
|
Chan CY, Lee YT, Mamada M, Goushi K, Tsuchiya Y, Nakanotani H, Adachi C. Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chem Sci 2022; 13:7821-7828. [PMID: 35865880 PMCID: PMC9258325 DOI: 10.1039/d2sc02478k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
This work reports a new acceptor for constructing donor–acceptor type (D–A type) blue thermally activated delayed fluorescence (TADF) emitters with narrowed charge-transfer (CT) emissions. A new acceptor core, carbazole-2-carbonitrile (CCN), is formed by the fusion of carbazole and benzonitrile. Three D–A type TADF emitters based on the CCN acceptor, namely 3CzCCN, 3MeCzCCN, and 3PhCzCCN, have been successfully synthesized and characterized. These emitters show deep-blue emissions from 439 to 457 nm with high photoluminescence quantum yields of up to 85% in degassed toluene solutions. Interestingly, all CCN-based deep-blue TADF emitters result in narrow CT emissions with full-width at half-maximums (FWHMs) of less than 50 nm in toluene solutions, which are pretty narrower compared with those of typical D–A type TADF emitters. Devices based on these emitters show high maximum external quantum efficiencies of up to 17.5%. Deep-blue donor–acceptor thermally activated delayed fluorescence emitters based on carbazole-2-carbonitrile are synthesized, resulting in narrow emission with full-width at half-maximums of less than 50 nm and a maximum OLED EQE of up to 17.5%.![]()
Collapse
Affiliation(s)
- Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan .,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University Motooka, Nishi Fukuoka 819-0395 Japan .,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
18
|
Zhou X, Yu T, Dong G. Site-Specific and Degree-Controlled Alkyl Deuteration via Cu-Catalyzed Redox-Neutral Deacylation. J Am Chem Soc 2022; 144:9570-9575. [PMID: 35613457 DOI: 10.1021/jacs.2c04382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Deuterated organic compounds have become increasingly important in many areas; however, it remains challenging to install deuterium site-selectively to unactivated aliphatic positions with control of the degree of deuteration. Here, we report a Cu-catalyzed degree-controlled deacylative deuteration of diverse alkyl groups with the methylketone (acetyl) moiety as a traceless activating group. The use of N-methylpicolino-hydrazonamide (MPHA) promotes efficient aromatization-driven C-C cleavage. Mono-, di-, and trideuteration at specific sites can be selectively achieved. The reaction is redox-neutral with broad functional group tolerance. The utility of this method has been demonstrated in forming a complete set of deuterated ethyl groups, merging with the Diels-Alder reaction, a net devinylative deuteration, and the synthesis of the d2-analogue of Austedo.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Tingting Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|