1
|
Kim MW, Ahn K, Lee CH, Kim TJ, Kim J, Han MS, Mo HU, Kim J, Park HW, Kwak HJ, Kim JH. The early development of a combined micro- and full-field X-ray fluorescence analysis system using white X-rays at PLS-II. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:254-260. [PMID: 39700022 PMCID: PMC11708863 DOI: 10.1107/s1600577524011111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
X-ray fluorescence (XRF) is widely used to analyze elemental distributions in samples. Micro-XRF (µ-XRF), the most basic conventional XRF technique, offers good spatial resolution through precise 2D scanning with a micrometre-sized X-ray source. Recently, synchrotron based XRF analysis platforms have achieved nano-XRF with highly focused X-rays using polycapillary optics or mirrors, leveraging the excellent coherence of synchrotron radiation. However, XRF techniques are hindered by long data acquisition times (exceeding several hours) due to their point-by-point scanning approach, impeding large-area elemental mapping. Full-field XRF (FF-XRF), developed in the 2010s and based on the high brilliance of synchrotron X-rays, enables significantly shorter (less than a few minutes) data acquisition times via single-exposure imaging using a 2D X-ray detector. Nevertheless, it is constrained by relatively low spatial resolution and sensitivity. Hence, a new XRF platform is required to accommodate resolution demands to cover diverse experimental purposes. In this study, we developed a preliminary model of a novel XRF system that combines micro- and full-field XRF setups to address these limitations. This system allows easy mode switching while maintaining the region of interest of the imaging system within a single apparatus, simply by rotating the sample to face either detector depending on research purposes. We anticipate that this new XRF system will be widely utilized in various research fields as the initial XRF setup at Pohang Light Source-II.
Collapse
Affiliation(s)
- Min Woo Kim
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Kangwoo Ahn
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Chang Hun Lee
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Tae Joo Kim
- Neutron Science DivisionKorean Atomic Energy Research InstituteDaejeon34057Republic of Korea
| | - JongYul Kim
- Neutron Science DivisionKorean Atomic Energy Research InstituteDaejeon34057Republic of Korea
| | - Min-Su Han
- Korea National University of Heritage, Buyeo33115, Republic of Korea
| | - Hyeong Uk Mo
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Jina Kim
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Hyun Wook Park
- Department of PhysicsKyungpook National UniversityDaegu41566Republic of Korea
| | - Ho Jae Kwak
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
| | - Jong Hyun Kim
- Pohang Accelerator Laboratory (PAL), POSTECH, Pohang37673, Republic of Korea
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Republic of Korea
| |
Collapse
|
2
|
Paulus A, Ahrens F, Schraut A, Hofmann H, Schiller T, Sura T, Becher D, Uebe R. MamF-like proteins are distant Tic20 homologs involved in organelle assembly in bacteria. Nat Commun 2024; 15:10657. [PMID: 39653729 PMCID: PMC11628618 DOI: 10.1038/s41467-024-55121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Organelle-specific protein translocation systems are essential for organelle biogenesis and maintenance in eukaryotes but thought to be absent from prokaryotic organelles. Here, we demonstrate that MamF-like proteins are crucial for the formation and functionality of bacterial magnetosome organelles. Deletion of mamF-like genes in the Alphaproteobacterium Magnetospirillum gryphiswaldense results in severe defects in organelle positioning, biomineralization, and magnetic navigation. These phenotypic defects result from the disrupted targeting of a subset of magnetosomal proteins that contain C-terminal glycine-rich integral membrane domains. Phylogenetic analyses reveal an ancient evolutionary link between MamF-like proteins and plastidial Tic20. Our findings redefine the molecular roles of MamF-like proteins and suggest that organelle-specific protein targeting systems also play a role in bacterial organelle formation.
Collapse
Affiliation(s)
- Anja Paulus
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Frederik Ahrens
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Annika Schraut
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Hannah Hofmann
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Tim Schiller
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Thomas Sura
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - René Uebe
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
3
|
Masó-Martínez M, Bond J, Okolo CA, Jadhav AC, Harkiolaki M, Topham PD, Fernández-Castané A. An Integrated Approach to Elucidate the Interplay between Iron Uptake Dynamics and Magnetosome Formation at the Single-Cell Level in Magnetospirillum gryphiswaldense. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62557-62570. [PMID: 39480433 PMCID: PMC11565563 DOI: 10.1021/acsami.4c15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level. To gain insights we employed a holistic multiscale approach, i.e., from elemental iron species to bacterial populations, to elucidate the interplay between iron uptake dynamics and magnetosome formation in Magnetospirillum gryphiswaldense MSR-1 under near-native conditions. We combined a correlative microscopy approach integrating light and X-ray tomography with analytical techniques, such as flow cytometry and inductively coupled plasma spectroscopy, to evaluate the effects of iron and oxygen availability on cellular growth, magnetosome biogenesis, and intracellular iron pool in MSR-1. Our results revealed that increased iron availability under microaerobic conditions significantly promoted the formation of longer magnetosome chains and increased intracellular iron uptake, with a saturation point at 300 μM iron citrate. Beyond this threshold, additional iron did not further extend the magnetosome chain length or increase total intracellular iron levels. Moreover, our work reveals (i) a direct correlation between the labile Fe2+ pool size and magnetosome content, with higher intracellular iron concentrations correlating with increased magnetosome production, and (ii) the existence of an intracellular iron pool, distinct from magnetite, persisting during all stages of biomineralization. This study offers insights into iron dynamics in magnetosome biomineralization at a single-cell level, potentially enhancing the industrial biomanufacturing of magnetosomes.
Collapse
Affiliation(s)
- Marta Masó-Martínez
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Josh Bond
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Chidinma A Okolo
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Archana C Jadhav
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
- Chemistry
Department, University of Warwick, Coventry CV4 7SH, United Kingdom
| | - Paul D Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Alfred Fernández-Castané
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
4
|
Chen Y, Li ZH, Zeng X, Zhang XZ. Bacteria-based bioactive materials for cancer imaging and therapy. Adv Drug Deliv Rev 2023; 193:114696. [PMID: 36632868 DOI: 10.1016/j.addr.2023.114696] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Owing to the unique biological functions, bacteria as biological materials have been widely used in biomedical field. With advances in biotechnology and nanotechnology, various bacteria-based bioactive materials were developed for cancer imaging and therapy. In this review, different types of bacteria-based bioactive materials and their construction strategies were summarized. The advantages and property-function relationship of bacteria-based bioactive materials were described. Representative researches of bacteria-based bioactive materials in cancer imaging and therapy were illustrated, revealing general ideas for their construction. Also, limitation and challenges of bacteria-based bioactive materials in cancer research were discussed.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
5
|
Quinn PD, Cacho-Nerin F, Gomez-Gonzalez MA, Parker JE, Poon T, Walker JM. Differential phase contrast for quantitative imaging and spectro-microscopy at a nanoprobe beamline. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:200-207. [PMID: 36601938 PMCID: PMC9814065 DOI: 10.1107/s1600577522010633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/04/2022] [Indexed: 06/13/2023]
Abstract
The interaction of a focused X-ray beam with a sample in a scanning probe experiment can provide a variety of information about the interaction volume. In many scanning probe experiments X-ray fluorescence (XRF) is supplemented with measurements of the transmitted or scattered intensity using a pixelated detector. The automated extraction of different signals from an area pixelated detector is described, in particular the methodology for extracting differential phase contrast (DPC) is demonstrated and different processing methods are compared across a range of samples. The phase shift of the transmitted X-ray beam by the sample, extracted from DPC, is also compared with ptychography measurements to provide a qualitative and quantitative comparison. While ptychography produces a superior image, DPC can offer a simple, flexible method for phase contrast imaging which can provide fast results and feedback during an experiment; furthermore, for many science problems, such as registration of XRF in a lighter matrix, DPC can provide sufficient information to meet the experimental aims. As the DPC technique is a quantitative measurement, it can be expanded to spectroscopic studies and a demonstration of DPC for spectro-microscopy measurements is presented. Where ptychography can separate the absorption and phase shifts by the sample, quantitative interpretation of a DPC image or spectro-microscopy signal can only be performed directly when absorption is negligible or where the absorption contribution is known and the contributions can be fitted.
Collapse
Affiliation(s)
- Paul D. Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Miguel A. Gomez-Gonzalez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Julia E. Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Timothy Poon
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Jessica M. Walker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|
6
|
Pattammattel A, Tappero R, Gavrilov D, Zhang H, Aronstein P, Forman HJ, O'Day PA, Yan H, Chu YS. Multimodal X-ray nano-spectromicroscopy analysis of chemically heterogeneous systems. Metallomics 2022; 14:6754152. [PMID: 36208212 PMCID: PMC9584160 DOI: 10.1093/mtomcs/mfac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022]
Abstract
Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disciplines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration depth and sensitivity. The multidimensional (4D+) structure of spectromicroscopy data poses visualization and data-reduction challenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical user interface and data analysis platform named XMIDAS (X-ray multimodal image data analysis software) to visualize spectromicroscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis methods with well-established machine learning classification algorithms (e.g. nonnegative matrix factorization) for data reduction. The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known chemical composition. Nanoprobe-based X-ray fluorescence (nano-XRF) and X-ray absorption near edge structure (nano-XANES) spectromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex biological and environmental samples using X-ray spectromicroscopy techniques.
Collapse
Affiliation(s)
- Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryan Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dmitri Gavrilov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul Aronstein
- Environmental Systems Graduate Program, University of California, Merced, CA 95343, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy A O'Day
- Environmental Systems Graduate Program, University of California, Merced, CA 95343, USA.,Life and Environmental Sciences Department and the Sierra Nevada Research Institute, University of California, Merced, CA 95343, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
7
|
Biomineralization and biotechnological applications of bacterial magnetosomes. Colloids Surf B Biointerfaces 2022; 216:112556. [PMID: 35605573 DOI: 10.1016/j.colsurfb.2022.112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 01/13/2023]
Abstract
Magnetosomes intracellularly biomineralized by Magnetotactic bacteria (MTB) are membrane-enveloped nanoparticles of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4). MTB thrive in oxic-anoxic interface and exhibit magnetotaxis due to the presence of magnetosomes. Because of the unique characteristic and bionavigation inspiration of magnetosomes, MTB has been a subject of study focused on by biologists, medical pharmacologists, geologists, and physicists since the discovery. We herein first briefly review the features of MTB and magnetosomes. The recent insights into the process and mechanism for magnetosome biomineralization including iron uptake, magnetosome membrane invagination, iron mineralization and magnetosome chain assembly are summarized in detail. Additionally, the current research progress in biotechnological applications of magnetosomes is also elucidated, such as drug delivery, MRI image contrast, magnetic hyperthermia, wastewater treatment, and cell separation. This review would expand our understanding of biomineralization and biotechnological applications of bacterial magnetosomes.
Collapse
|
8
|
Tran D, DiGiacomo P, Born DE, Georgiadis M, Zeineh M. Iron and Alzheimer's Disease: From Pathology to Imaging. Front Hum Neurosci 2022; 16:838692. [PMID: 35911597 PMCID: PMC9327617 DOI: 10.3389/fnhum.2022.838692] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating brain disorder that afflicts millions worldwide with no effective treatment. Currently, AD progression has primarily been characterized by abnormal accumulations of β-amyloid within plaques and phosphorylated tau within neurofibrillary tangles, giving rise to neurodegeneration due to synaptic and neuronal loss. While β-amyloid and tau deposition are required for clinical diagnosis of AD, presence of such abnormalities does not tell the complete story, and the actual mechanisms behind neurodegeneration in AD progression are still not well understood. Support for abnormal iron accumulation playing a role in AD pathogenesis includes its presence in the early stages of the disease, its interactions with β-amyloid and tau, and the important role it plays in AD related inflammation. In this review, we present the existing evidence of pathological iron accumulation in the human AD brain, as well as discuss the imaging tools and peripheral measures available to characterize iron accumulation and dysregulation in AD, which may help in developing iron-based biomarkers or therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dean Tran
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Phillip DiGiacomo
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Donald E. Born
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford School of Medicine, Stanford, CA, United States
| |
Collapse
|