1
|
Wei X, Nguyen CK, Taylor PD, Krishnamurthi V, Syed N, Le PY, Spencer MJS, Daeneke T, Bao L. Surface chemistry altering electronic behaviour of liquid metal-derived tin oxide nanosheets. NANOSCALE 2024; 16:13551-13561. [PMID: 38949653 DOI: 10.1039/d4nr01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Possessing excellent electronic properties and high chemical stability, semiconducting n-type two-dimensional (2D) tin dioxide (SnO2) nanosheets have been featured in sensing and electrocatalysis applications recently. Derived from non-layered crystal structures, 2D SnO2 has abundant unsaturated dangling bonds existing at the surface, providing interfacial activity. How the surface chemistry alters the electronic properties of 2D SnO2 nanomaterials remains unexplored. In this study, we synthesised ultra-thin 2D SnO2 nanosheets using a liquid metal (LM) touch printing technique and investigated experimentally and theoretically how the interactions of organic solvents composed of alkyl and hydroxyl groups with the surface of LM-derived 2D SnO2 modulate the electronic properties. It was found that alkane solvents can physically absorb onto the SnO2 surface with no impact on the material conductivity. Alcohol-based solvents on the other hand interact with the SnO2 surface via chemical absorptions primarily, in which oxygen atoms of hydroxyl groups in the alcohols form bonds with the surface atoms of SnO2. The binding stability is determined by the length and configuration of the hydrocarbon chain in alcohols. As representative long-chain alcohols, 1-octanol and 1-pentanol attach onto the SnO2 surface strongly, lowering the binding energy of Sn4+ and reducing the electron transfer ability of SnO2 nanosheets. Consequently, the electronic properties, i.e. conductivity and electronic mobility of SnO2 nanosheet-based electronic devices are decreased significantly.
Collapse
Affiliation(s)
- Xiaotian Wei
- School of Engineering, RMIT University, Australia.
| | | | | | | | - Nitu Syed
- School of Engineering, RMIT University, Australia.
- ARC Centre of Excellence for Transformative meta-Optical Systems, The University of Melbourne, Australia
| | - Phuong Y Le
- School of Science, RMIT University, Australia
| | - Michelle J S Spencer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, Australia
| | | | - Lei Bao
- School of Engineering, RMIT University, Australia.
| |
Collapse
|
2
|
Melendez LV, Nguyen CK, Wilms M, Syed N, Daeneke T, Duffy NW, Fery A, Della Gaspera E, Gómez DE. Probing the Interaction between Individual Metal Nanocrystals and Two-Dimensional Metal Oxides via Electron Energy Loss Spectroscopy. NANO LETTERS 2024; 24:1944-1950. [PMID: 38305174 DOI: 10.1021/acs.nanolett.3c04225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Metal nanoparticles can photosensitize two-dimensional metal oxides, facilitating their electrical connection to devices and enhancing their abilities in catalysis and sensing. In this study, we investigated how individual silver nanoparticles interact with two-dimensional tin oxide and antimony-doped indium oxide using electron energy loss spectroscopy (EELS). The measurement of the spectral line width of the longitudinal plasmon resonance of the nanoparticles in absence and presence of 2D materials allowed us to quantify the contribution of chemical interface damping to the line width. Our analysis reveals that a stronger interaction (damping) occurs with 2D antimony-doped indium oxide due to its highly homogeneous surface. The results of this study offer new insight into the interaction between metal nanoparticles and 2D materials.
Collapse
Affiliation(s)
- Lesly V Melendez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael Wilms
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nitu Syed
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Noel W Duffy
- CSIRO Energy, Clayton South, Victoria 3169, Australia
| | - Andreas Fery
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
- Institute for Physical Chemistry and Polymer Physics, Leibniz Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | | | - Daniel E Gómez
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Kim J, Lee J, Lee JM, Facchetti A, Marks TJ, Park SK. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. SMALL METHODS 2024; 8:e2300246. [PMID: 37203281 DOI: 10.1002/smtd.202300246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/21/2023] [Indexed: 05/20/2023]
Abstract
New emerging low-dimensional such as 0D, 1D, and 2D nanomaterials have attracted tremendous research interests in various fields of state-of-the-art electronics, optoelectronics, and photonic applications due to their unique structural features and associated electronic, mechanical, and optical properties as well as high-throughput fabrication for large-area and low-cost production and integration. Particularly, photodetectors which transform light to electrical signals are one of the key components in modern optical communication and developed imaging technologies for whole application spectrum in the daily lives, including X-rays and ultraviolet biomedical imaging, visible light camera, and infrared night vision and spectroscopy. Today, diverse photodetector technologies are growing in terms of functionality and performance beyond the conventional silicon semiconductor, and low-dimensional nanomaterials have been demonstrated as promising potential platforms. In this review, the current states of progress on the development of these nanomaterials and their applications in the field of photodetectors are summarized. From the elemental combination for material design and lattice structure to the essential investigations of hybrid device architectures, various devices and recent developments including wearable photodetectors and neuromorphic applications are fully introduced. Finally, the future perspectives and challenges of the low-dimensional nanomaterials based photodetectors are also discussed.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Junho Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jong-Min Lee
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Antonio Facchetti
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| | - Sung Kyu Park
- Displays and Devices Research Lab. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
4
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
5
|
Tran DM, Son JW, Ju TS, Hwang C, Park BH. Dopamine-Regulated Plasticity in MoO 3 Synaptic Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49329-49337. [PMID: 37819637 DOI: 10.1021/acsami.3c06866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.
Collapse
Affiliation(s)
- Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Li P, Dong L, Peng B, Nan K, Liu W. Quantum transport simulations of sub-5 nm bilayer Ga 2O 3transistor for high-performance applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:035301. [PMID: 37802063 DOI: 10.1088/1361-648x/ad00f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Two-dimensional (2D) semiconductors with bizarre properties show great application potential for nanoscale devices, which is regarded as the Si alternation to extend the Moore's Law in sub-5 nm era. In this study, we investigate the electronic structure and ballistic transport characteristics of sub-5 nm bilayer (BL) Ga2O3metal-oxide-semiconductor field-effect transistor (MOSFET) using the first-principles calculations and the nonequilibrium Green's function method. Quasi-direct band structure with bandgap of 4.77 eV is observed in BL Ga2O3, and high electron mobility of 910 cm2V-1s-1at 300 K is observed under the full-phonon scattered processes. Due to the enlarged natural length, the gate-controllable ability of 2D Ga2O3n-MOSFET is suppressed with the increased layer. The transport characteristic investigation indicates that BL Ga2O3n-MOSFETs can meet the latest International Technology Roadmap for Semiconductors requirement for high-performance application untilLg= 4 nm. The figures of merits including on-current, intrinsic delay time, and power delay product are showing competitive potential with the reported 2D materials. With the help of underlap structure, the device performance can be further improved in the sub-3 nm region. Our results indicate that BL Ga2O3is a promising candidate for sub-5 nm MOSFET applications.
Collapse
Affiliation(s)
- Penghui Li
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Linpeng Dong
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Bo Peng
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Kai Nan
- Department of Osteonecrosis & Joint Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, People's Republic of China
| | - Weiguo Liu
- Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, Xi'an Technological University, Xi'an 710032, People's Republic of China
| |
Collapse
|
7
|
Patil SA, Jagdale PB, Singh A, Singh RV, Khan Z, Samal AK, Saxena M. 2D Zinc Oxide - Synthesis, Methodologies, Reaction Mechanism, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206063. [PMID: 36624578 DOI: 10.1002/smll.202206063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is a thermally stable n-type semiconducting material. ZnO 2D nanosheets have mainly gained substantial attention due to their unique properties, such as direct bandgap and strong excitonic binding energy at room temperature. These are widely utilized in piezotronics, energy storage, photodetectors, light-emitting diodes, solar cells, gas sensors, and photocatalysis. Notably, the chemical properties and performances of ZnO nanosheets largely depend on the nano-structuring that can be regulated and controlled through modulating synthetic strategies. Two synthetic approaches, top-down and bottom-up, are mainly employed for preparing ZnO 2D nanomaterials. However, owing to better results in producing defect-free nanostructures, homogenous chemical composition, etc., the bottom-up approach is extensively used compared to the top-down method for preparing ZnO 2D nanosheets. This review presents a comprehensive study on designing and developing 2D ZnO nanomaterials, followed by accenting its potential applications. To begin with, various synthetic strategies and attributes of ZnO 2D nanosheets are discussed, followed by focusing on methodologies and reaction mechanisms. Then, their deliberation toward batteries, supercapacitors, electronics/optoelectronics, photocatalysis, sensing, and piezoelectronic platforms are further discussed. Finally, the challenges and future opportunities are featured based on its current development.
Collapse
Affiliation(s)
- Sayali Ashok Patil
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Pallavi Bhaktapralhad Jagdale
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Ashish Singh
- R&D, Technology and Innovation, Merck- Living Innovation, Sigma Aldrich Chemicals Pvt. Ltd., #12, Bommasandra- Jigni Link Road, Bengaluru, Karnataka, 560100, India
| | - Ravindra Vikram Singh
- R&D, Technology and Innovation, Merck- Living Innovation, Sigma Aldrich Chemicals Pvt. Ltd., #12, Bommasandra- Jigni Link Road, Bengaluru, Karnataka, 560100, India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Akshaya Kumar Samal
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Manav Saxena
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
8
|
Eshete M, Li X, Yang L, Wang X, Zhang J, Xie L, Deng L, Zhang G, Jiang J. Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. SMALL SCIENCE 2023; 3:2200041. [PMID: 40212059 PMCID: PMC11935971 DOI: 10.1002/smsc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor-metal-interface-based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.
Collapse
Affiliation(s)
- Mesfin Eshete
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
- Department of Industrial ChemistryCollege of Applied SciencesNanotechnology Excellence CenterAddis Ababa Science and Technology UniversityP.O. Box 16417Addis AbabaEthiopia
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Li Yang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Xijun Wang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jinxiao Zhang
- College of Chemistry and BioengineeringGuilin University of Technology12 Jian'gan RoadGuilinGuangxi541004P. R. China
| | - Liyan Xie
- A Key Laboratory of the- Ministry of Education for Advanced- Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhuaZhejiang321004P. R. China
| | - Linjie Deng
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the MicroscaleSchool of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaJinzhai Road 96HefeiAnhui230026P. R. China
| |
Collapse
|
9
|
Abstract
The past one and a half decades have witnessed the tremendous progress of two-dimensional (2D) crystals, including graphene, transition-metal dichalcogenides, black phosphorus, MXenes, hexagonal boron nitride, etc., in a variety of fields. The key to their success is their unique structural, electrical, mechanical and optical properties. Herein, this paper gives a comprehensive summary on the recent advances in 2D materials for optoelectronic approaches with the emphasis on the morphology and structure, optical properties, synthesis methods, as well as detailed optoelectronic applications. Additionally, the challenges and perspectives in the current development of 2D materials are also summarized and indicated. Therefore, this review can provide a reference for further explorations and innovations of 2D material-based optoelectronics devices.
Collapse
|