1
|
Yue W, Guo Y, Lee JC, Ganbold E, Wu JK, Li Y, Wang C, Kim HS, Shin YK, Liang JG, Kim ES, Kim NY. Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications. NANO-MICRO LETTERS 2025; 17:106. [PMID: 39779609 PMCID: PMC11712043 DOI: 10.1007/s40820-024-01599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component-specifically, the passive sensor module, the wireless communication model, and the readout module-within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.
Collapse
Affiliation(s)
- Wei Yue
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Yunjian Guo
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jong-Chul Lee
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jia-Kang Wu
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Li
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Microelectronics, Shandong University, Jinan, 250101, People's Republic of China
| | - Cong Wang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Young-Kee Shin
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| | - Jun-Ge Liang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Dia KKH, Escobar AR, Qin H, Ye F, Jimenez A, Hasan MA, Hajiaghajani A, Dautta M, Li L, Tseng P. Passive Wireless Porous Biopolymer Sensors for At-Home Monitoring of Oil and Fatty Acid Nutrition. ACS APPLIED BIO MATERIALS 2024; 7:5452-5460. [PMID: 39031088 DOI: 10.1021/acsabm.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Dietary oils─rich in omega-3, -6, and -9 fatty acids─exhibit critical impacts on health parameters such as cardiovascular function, bodily inflammation, and neurological development. There has emerged a need for low-cost, accessible method to assess dietary oil consumption and its health implications. Existing methods typically require specialized, complex equipment and extensive sample preparation steps, rendering them unsuitable for home use. Addressing this gap, herein, we study passive wireless, biocompatible biosensors that can be used to monitor dietary oils directly from foods either prepared or cooked in oil. This design uses broad-coupled split ring resonators interceded with porous silk fibroin biopolymer (requiring only food-safe materials, such as aluminum foil and biopolymer). These porous biopolymer films absorb oils at rates proportional to their viscosity/fatty acid composition and whose response can be measured wirelessly without any microelectronic components touching food. The engineering and mechanism of such sensors are explored, alongside their ability to measure the oil presence and fatty acid content directly from foods. Its simplicity, portability, and inexpensiveness are ideal for emerging needs in precision nutrition─such sensors may empower individuals to make informed dietary decisions based on direct-from-food measurements.
Collapse
Affiliation(s)
- Kazi Khurshidi Haque Dia
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Alberto Ranier Escobar
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Huiting Qin
- Material and Manufacturing Technology Program, University of California, Irvine, California 92617, United States
| | - Fan Ye
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Abel Jimenez
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Md Abeed Hasan
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Amirhossein Hajiaghajani
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Manik Dautta
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Lei Li
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| | - Peter Tseng
- Department of Electrical Engineering and Computer Science, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Engineering Hall #3110, Irvine, California 92697, United States
| |
Collapse
|
3
|
Li X, Sun R, Pan J, Shi Z, An Z, Dai C, Lv J, Liu G, Liang H, Liu J, Lu Y, Zhang F, Liu Q. Rapid and on-site wireless immunoassay of respiratory virus aerosols via hydrogel-modulated resonators. Nat Commun 2024; 15:4035. [PMID: 38740742 PMCID: PMC11091083 DOI: 10.1038/s41467-024-48294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
4
|
Li X, Sun R, Pan J, Shi Z, Lv J, An Z, He Y, Chen Q, Han RPS, Zhang F, Lu Y, Liang H, Liu Q. All-MXene-Printed RF Resonators as Wireless Plant Wearable Sensors for In Situ Ethylene Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207889. [PMID: 36899491 DOI: 10.1002/smll.202207889] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Printed flexible electronics have emerged as versatile functional components of wearable intelligent devices that bridge the digital information networks with biointerfaces. Recent endeavors in plant wearable sensors provide real-time and in situ insights to study phenotyping traits of crops, whereas monitoring of ethylene, the fundamental phytohormone, remains challenging due to the lack of flexible and scalable manufacturing of plant wearable ethylene sensors. Here the all-MXene-printed flexible radio frequency (RF) resonators are presented as plant wearable sensors for wireless ethylene detection. The facile formation of additive-free MXene ink enables rapid, scalable manufacturing of printed electronics, demonstrating decent printing resolution (2.5% variation), ≈30000 S m-1 conductivity and mechanical robustness. Incorporation of MXene-reduced palladium nanoparticles (MXene@PdNPs) facilitates 1.16% ethylene response at 1 ppm with 0.084 ppm limit of detection. The wireless sensor tags are attached on plant organ surfaces for in situ and continuously profiling of plant ethylene emission to inform the key transition of plant biochemistry, potentially extending the application of printed MXene electronics to enable real-time plant hormone monitoring for precision agriculture and food industrial management.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rujing Sun
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan He
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Qingmei Chen
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanli Lu
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Biosafety III Laboratory, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|