1
|
Song L, Wang L, He Z, Cui X, Peng C, Xu J, Yong Z, Liu Y, Fei JF. Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution. SMALL METHODS 2025; 9:e2401056. [PMID: 39871658 DOI: 10.1002/smtd.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/03/2025] [Indexed: 01/29/2025]
Abstract
Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections. Use of this membrane-based method greatly increases the number of genes captured in cells compared to the number captured using nucleus-based methods; the numbers of genes are increased by 67% and 119% in mouse and axolotl livers, respectively. The obtained expression profiles are more consistent with single-cell RNA-seq data, demonstrating more rational clustering and apparent cell type-specific markers. Furthermore, improved single-cell resolution is achieved to better identify rare cell types and elaborate spatial domains in the axolotl brain and intestine. In addition to regular cells, accurate recognition of multinucleated cells and cells lacking nuclei in the mouse liver is achieved, demonstrating its ability to analyze complex tissues and organs, which is not achievable using previous methods. This study provides a powerful tool for improving spatial transcriptomics that has broad potential for its applications in the biological and medical sciences.
Collapse
Affiliation(s)
- Li Song
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Zitian He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Xiao Cui
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Jie Xu
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Zhouying Yong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
2
|
Dai K, Zhao J, Li L, Fu X. Spatially Controlled MicroRNA Imaging in Mitochondria via Enzymatic Activation of Hybridization Chain Reaction. SMALL METHODS 2024:e2401531. [PMID: 39543789 DOI: 10.1002/smtd.202401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Live-cell imaging of RNA in specific subcellular compartments is essential for elucidating the rich repertoire of cellular functions, but it has been limited by a lack of simple, precisely controlled methods. Here such an approach is presented via the combination of hybridization chain reaction and spatially restricted enzymatic activation with organelle-targeted delivery. The system can localize engineered DNA hairpins in the mitochondria, where target RNA-initiated chain reaction of hybridization events is selectively activated by a specific enzyme, enabling amplified RNA imaging with high precision. It is demonstrated that the approach is compatible with live cell visualization and enables the regulatable imaging of microRNA in mitochondria. Since in situ activation of the signal amplification with enzyme eliminates the need for genetically encoded protein overexpression, it is envisioned that this simple platform will be broadly applicable for precise RNA imaging with subcellular resolution in a variety of biological processes.
Collapse
Affiliation(s)
- Kaining Dai
- Sanbo Brain Hospital, Capital Medical University, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100070, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaojun Fu
- Sanbo Brain Hospital, Capital Medical University, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
3
|
Cao J, Zheng Z, Sun D, Chen X, Cheng R, Lv T, An Y, Zheng J, Song J, Wu L, Yang C. Decoder-seq enhances mRNA capture efficiency in spatial RNA sequencing. Nat Biotechnol 2024; 42:1735-1746. [PMID: 38228777 DOI: 10.1038/s41587-023-02086-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Spatial transcriptomics technologies with high resolution often lack high sensitivity in mRNA detection. Here we report a dendrimeric DNA coordinate barcoding design for spatial RNA sequencing (Decoder-seq), which offers both high sensitivity and high resolution. Decoder-seq combines dendrimeric nanosubstrates with microfluidic coordinate barcoding to generate spatial arrays with a DNA density approximately ten times higher than previously reported methods while maintaining flexibility in resolution. We show that the high RNA capture efficiency of Decoder-seq improved the detection of lowly expressed olfactory receptor (Olfr) genes in mouse olfactory bulbs and contributed to the discovery of a unique layer enrichment pattern for two Olfr genes. The near-cellular resolution provided by Decoder-seq has enabled the construction of a spatial single-cell atlas of the mouse hippocampus, revealing dendrite-enriched mRNAs in neurons. When applying Decoder-seq to human renal cell carcinomas, we dissected the heterogeneous tumor microenvironment across different cancer subtypes and identified spatial gradient-expressed genes related to epithelial-mesenchymal transition with the potential to predict tumor prognosis and progression.
Collapse
Affiliation(s)
- Jiao Cao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Sun
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Cheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianpeng Lv
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu An
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Song
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Pang JMB, Byrne DJ, Bergin ART, Caramia F, Loi S, Gorringe KL, Fox SB. Spatial transcriptomics and the anatomical pathologist: Molecular meets morphology. Histopathology 2024; 84:577-586. [PMID: 37991396 DOI: 10.1111/his.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
In recent years anatomical pathology has been revolutionised by the incorporation of molecular findings into routine diagnostic practice, and in some diseases the presence of specific molecular alterations are now essential for diagnosis. Spatial transcriptomics describes a group of technologies that provide up to transcriptome-wide expression profiling while preserving the spatial origin of the data, with many of these technologies able to provide these data using a single tissue section. Spatial transcriptomics allows expression profiling of highly specific areas within a tissue section potentially to subcellular resolution, and allows correlation of expression data with morphology, tissue type and location relative to other structures. While largely still research laboratory-based, several spatial transcriptomics methods have now achieved compatibility with formalin-fixed paraffin-embedded tissue (FFPE), allowing their use in diagnostic tissue samples, and with further development potentially leading to their incorporation in routine anatomical pathology practice. This mini review provides an overview of spatial transcriptomics methods, with an emphasis on platforms compatible with FFPE tissue, approaches to assess the data and potential applications in anatomical pathology practice.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - David J Byrne
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alice R T Bergin
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Wang W, Tugaoen JD, Fadda P, Toland AE, Ma Q, Elder JB, Giglio P, Otero JJ. Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences. Acta Neuropathol Commun 2023; 11:192. [PMID: 38049893 PMCID: PMC10694987 DOI: 10.1186/s40478-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/20/2023] [Indexed: 12/06/2023] Open
Abstract
Post-resection radiologic monitoring to identify areas of new or progressive enhancement concerning for cancer recurrence is critical during patients with glioblastoma follow-up. However, treatment-related pseudoprogression presents with similar imaging features but requires different clinical management. While pathologic diagnosis is the gold standard to differentiate true progression and pseudoprogression, the lack of objective clinical standards and admixed histologic presentation creates the needs to (1) validate the accuracy of current approaches and (2) characterize differences between these entities to objectively differentiate true disease. We demonstrated using an online RNAseq repository of recurrent glioblastoma samples that cancer-immune cell activity levels correlate with heterogenous clinical outcomes in patients. Furthermore, nCounter RNA expression analysis of 48 clinical samples taken from second neurosurgical resection supports that pseudoprogression gene expression pathways are dominated with immune activation, whereas progression is predominated with cell cycle activity. Automated image processing and spatial expression analysis however highlight a failure to apply these broad expressional differences in a subset of cases with clinically challenging admixed histology. Encouragingly, applying unsupervised clustering approaches over our segmented histologic images provides novel understanding of morphologically derived differences between progression and pseudoprogression. Spatially derived data further highlighted polarization of myeloid populations that may underscore the tumorgenicity of novel lesions. These findings not only help provide further clarity of potential targets for pathologists to better assist stratification of progression and pseudoprogression, but also highlight the evolution of tumor-immune microenvironment changes which promote tumor recurrence.
Collapse
Affiliation(s)
- Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Jonah Domingo Tugaoen
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - J Brad Elder
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - José Javier Otero
- Department of Pathology, The Ohio State University Wexner Medical Center, The Ohio State University College of Medicine, 4166 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Alban TJ, Grabowski MM, Otvos B, Bayik D, Wang W, Zalavadia A, Makarov V, Troike K, McGraw M, Rabljenovic A, Lauko A, Neumann C, Roversi G, Waite KA, Cioffi G, Patil N, Tran TT, McCortney K, Steffens A, Diaz CM, Brown JM, Egan KM, Horbinski CM, Barnholtz-Sloan JS, Rajappa P, Vogelbaum MA, Bucala R, Chan TA, Ahluwalia MS, Lathia JD. The MIF promoter SNP rs755622 is associated with immune activation in glioblastoma. JCI Insight 2023; 8:e160024. [PMID: 37252795 PMCID: PMC10371339 DOI: 10.1172/jci.insight.160024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistance and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and, ultimately, the treatment response. However, little is known about how germline mutations affect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in the promoter of the cytokine macrophage migration inhibitory factor (MIF) is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may affect the immune microenvironment and further reveal a link between lactotransferrin and immune activation.
Collapse
Affiliation(s)
- Tyler J. Alban
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Center for Immunotherapy and Precision Oncology, and
| | - Matthew M. Grabowski
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Balint Otvos
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Defne Bayik
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Wesley Wang
- Nationwide Children’s Hospital, Institute for Genomic Medicine, Departments of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ajay Zalavadia
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Vlad Makarov
- Center for Immunotherapy and Precision Oncology, and
| | - Katie Troike
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anja Rabljenovic
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Adam Lauko
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Chase Neumann
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Gustavo Roversi
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Kristin A. Waite
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Nirav Patil
- University Hospitals Research and Education Institute, Cleveland, Ohio, USA
| | - Thuy T. Tran
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Kathleen McCortney
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Steffens
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - J. Mark Brown
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Kathleen M. Egan
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jill S. Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Prajwal Rajappa
- Nationwide Children’s Hospital, Institute for Genomic Medicine, Departments of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael A. Vogelbaum
- Departments of Cancer Epidemiology and Neuro-Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Richard Bucala
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Timothy A. Chan
- Center for Immunotherapy and Precision Oncology, and
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | | | - Justin D. Lathia
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Du J, Yang YC, An ZJ, Zhang MH, Fu XH, Huang ZF, Yuan Y, Hou J. Advances in spatial transcriptomics and related data analysis strategies. J Transl Med 2023; 21:330. [PMID: 37202762 PMCID: PMC10193345 DOI: 10.1186/s12967-023-04150-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Spatial transcriptomics technologies developed in recent years can provide various information including tissue heterogeneity, which is fundamental in biological and medical research, and have been making significant breakthroughs. Single-cell RNA sequencing (scRNA-seq) cannot provide spatial information, while spatial transcriptomics technologies allow gene expression information to be obtained from intact tissue sections in the original physiological context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into several applications, discuss the computational strategies and raise future perspectives, highlighting the developmental potential.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Yu-Chen Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Zhi-Jie An
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ming-Hui Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Xue-Hang Fu
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Zou-Fang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 Jiangxi China
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240 China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240 China
| | - Jian Hou
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| |
Collapse
|
8
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Microfluidics-based single cell analysis: From transcriptomics to spatiotemporal multi-omics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Xu X, Zhang Q, Li M, Lin S, Liang S, Cai L, Zhu H, Su R, Yang C. Microfluidic single‐cell multiomics analysis. VIEW 2022. [DOI: 10.1002/viw.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Xing Xu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Qiannan Zhang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Mingyin Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Shiyan Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Shanshan Liang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Linfeng Cai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Huanghuang Zhu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Rui Su
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
| | - Chaoyong Yang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering The First Affiliated Hospital of Xiamen UniversityXiamen University Xiamen China
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|