1
|
Dyck O, Almutlaq J, Lingerfelt D, Swett JL, Oxley MP, Huang B, Lupini AR, Englund D, Jesse S. Direct imaging of electron density with a scanning transmission electron microscope. Nat Commun 2023; 14:7550. [PMID: 37985658 PMCID: PMC10662251 DOI: 10.1038/s41467-023-42256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 11/22/2023] Open
Abstract
Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | | - David Lingerfelt
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jacob L Swett
- Biodesign Institute, Arizona State University, Tempe, 87287, AZ, USA
| | - Mark P Oxley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bevin Huang
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dirk Englund
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
2
|
Dyck O, Lupini AR, Jesse S. The Synthescope: A Vision for Combining Synthesis with Atomic Fabrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301560. [PMID: 37574252 DOI: 10.1002/adma.202301560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Indexed: 08/15/2023]
Abstract
The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
3
|
Dyck O, Lupini AR, Jesse S. A Platform for Atomic Fabrication and In Situ Synthesis in a Scanning Transmission Electron Microscope. SMALL METHODS 2023; 7:e2300401. [PMID: 37415539 DOI: 10.1002/smtd.202300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Indexed: 07/08/2023]
Abstract
The engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic-scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron-beam-based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top-down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real-time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA
| |
Collapse
|
4
|
Wu Y, Yuan Y, Shuang W, Wang L, Yang L, Bai Z, Lu J. Reducing Carbonaceous Salts for Facile Fabrication of Monolayer Graphene. SMALL METHODS 2023; 7:e2201596. [PMID: 36703553 DOI: 10.1002/smtd.202201596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Novel methods and mechanisms for graphene fabrication are of great importance in the development of materials science. Herein, a facile method to directly convert carbonaceous salts into high-quality freestanding graphene via a simple one-step redox reaction, is reported. The redox couple can be a combination of sodium borohydride (reductant) and sodium carbonate (oxidant), which can readily react with each other when evenly mixed/calcined and yield gram-scale, high-quality, contamination-free, micron-sized, freestanding graphene. More importantly, this method is applicable to a variety of input reductants and oxidants that are low cost and easily accessible. An in-depth investigation reveals that the carbonaceous oxidants can not only provide reduced carbon mass for graphene formation but also act as a self-template to guide the polymerization of carbon atoms following the pattern of the monolayer, six-carbon rings. In addition, the direct formation of graphene exhibits theoretically lower energy barriers than that of other allotropes such as fullerene and carbon nanotube. This facile, low-cost, scalable, and applicable method for mass production of high-quality graphene is expected to revolutionize graphene fabrication technology and boost its practical application to the industry level.
Collapse
Affiliation(s)
- Yujun Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Wei Shuang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Evangeli C, Tewari S, Kruip JM, Bian X, Swett JL, Cully J, Thomas J, Briggs GAD, Mol JA. Statistical signature of electrobreakdown in graphene nanojunctions. Proc Natl Acad Sci U S A 2022; 119:e2119015119. [PMID: 35759664 PMCID: PMC9271182 DOI: 10.1073/pnas.2119015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Controlled electrobreakdown of graphene is important for the fabrication of stable nanometer-size tunnel gaps, large-scale graphene quantum dots, and nanoscale resistive switches, etc. However, owing to the complex thermal, electronic, and electrochemical processes at the nanoscale that dictate the rupture of graphene, it is difficult to generate conclusions from individual devices. We describe here a way to explore the statistical signature of the graphene electrobreakdown process. Such analysis tells us that feedback-controlled electrobreakdown of graphene in the air first shows signs of joule heating-induced cleaning followed by rupturing of the graphene lattice that is manifested by the lowering of its conductance. We show that when the conductance of the graphene becomes smaller than around 0.1 G0, the effective graphene notch width starts to decrease exponentially slower with time. Further, we show how this signature gets modified as we change the environment and or the substrate. Using statistical analysis, we show that the electrobreakdown under a high vacuum could lead to substrate modification and resistive-switching behavior, without the application of any electroforming voltage. This is attributed to the formation of a semiconducting filament that makes a Schottky barrier with the graphene. We also provide here the statistically extracted Schottky barrier threshold voltages for various substrate studies. Such analysis not only gives a better understanding of the electrobreakdown of graphene but also can serve as a tool in the future for single-molecule diagnostics.
Collapse
Affiliation(s)
| | - Sumit Tewari
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jonathan Marcell Kruip
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Xinya Bian
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jacob L. Swett
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - John Cully
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - James Thomas
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - G. Andrew D. Briggs
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Jan A. Mol
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
6
|
Dyck O, Swett JL, Evangeli C, Lupini AR, Mol J, Jesse S. Contrast Mechanisms in Secondary Electron e-Beam-Induced Current (SEEBIC) Imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-17. [PMID: 35644675 DOI: 10.1017/s1431927622000824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few years, a new mode for imaging in the scanning transmission electron microscope (STEM) has gained attention as it permits the direct visualization of sample conductivity and electrical connectivity. When the electron beam (e-beam) is focused on the sample in the STEM, secondary electrons (SEs) are generated. If the sample is conductive and electrically connected to an amplifier, the SE current can be measured as a function of the e-beam position. This scenario is similar to the better-known scanning electron microscopy-based technique, electron beam-induced current imaging, except that the signal in the STEM is generated by the emission of SEs, hence the name secondary electron e-beam-induced current (SEEBIC), and in this case, the current flows in the opposite direction. Here, we provide a brief review of recent work in this area, examine the various contrast generation mechanisms associated with SEEBIC, and illustrate its use for the characterization of graphene nanoribbon devices.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jacob L Swett
- Biodesign Institute, Arizona State University, Tempe, AZ 87287, USA
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
| | | | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jan Mol
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, UK
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|