1
|
Gardey E, Eberhardt J, Hoeppener S, Sobotta FH, Brendel JC, Stallmach A. Anti-Inflammatory Potential of Beclometasone-Loaded Filomicelles on Activated Human Monocytes. Macromol Biosci 2024; 24:e2400179. [PMID: 38780274 DOI: 10.1002/mabi.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Polymeric micelles with a hydrophobic core represent versatile nanostructures for encapsulation and delivery of water-insoluble drugs. Here, water-insoluble beclometasone dipropionate (BDP) which is a potent anti-inflammatory therapeutic agent but limited to topical applications so far, is encapsulated. Therefore, this work used an amphiphilic block copolymer self-assembling into flexible polymeric filomicelles, which have recently proven to selectively target inflamed areas in patients with inflammatory bowel disease (IBD). The small diameter and flexibility of these filomicelles is considered beneficial for transepithelial passages, while their length minimizes the unspecific uptake into nontargeted cells. This work successfully establishes a protocol to load the water-insoluble BDP into the core of the filomicelles, while maintaining the particle stability to prevent any premature drug release. The anti-inflammatory efficacy of BDP-loaded filomicelles is further investigated on lipopolysaccharide (LPS) stimulated human monocytes. In these ex vivo assays, the BDP-loaded filomicelles significantly reduce TNF-α, IL-6, IL-1ß, IL-12p70, IL-17a, and IL-23 release after 24 h. Additional time course study of drug-loaded filomicelles and their comparison with a common water-soluble and unspecific corticosteroid demonstrate promising results with significant immune response suppression in stimulated monocytes after 2 and 6 h. These findings demonstrate the potential of polymeric filomicelles as a vehicle for potent water-insoluble corticosteroids.
Collapse
Affiliation(s)
- Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Juliane Eberhardt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Fabian H Sobotta
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Johannes C Brendel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Interdisciplinary Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
2
|
Gardey E, Cseresnyes Z, Sobotta FH, Eberhardt J, Haziri D, Grunert PC, Kuchenbrod MT, Gruschwitz FV, Hoeppener S, Schumann M, Gaßler N, Figge MT, Stallmach A, Brendel JC. Selective Uptake Into Inflamed Human Intestinal Tissue and Immune Cell Targeting by Wormlike Polymer Micelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306482. [PMID: 38109123 DOI: 10.1002/smll.202306482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Inflammatory bowel disease (IBD) has become a globally prevalent chronic disease with no causal therapeutic options. Targeted drug delivery systems with selectivity for inflamed areas in the gastrointestinal tract promise to reduce severe drug-related side effects. By creating three distinct nanostructures (vesicles, spherical, and wormlike micelles) from the same amphiphilic block copolymer poly(butyl acrylate)-block-poly(ethylene oxide) (PBA-b-PEO), the effect of nanoparticle shape on human mucosal penetration is systematically identified. An Ussing chamber technique is established to perform the ex vivo experiments on human colonic biopsies, demonstrating that the shape of polymeric nanostructures represents a rarely addressed key to tissue selectivity required for efficient IBD treatment. Wormlike micelles specifically enter inflamed mucosa from patients with IBD, but no significant uptake is observed in healthy tissue. Spheres (≈25 nm) and vesicles (≈120 nm) enter either both normal and inflamed tissue types or do not penetrate any tissue. According to quantitative image analysis, the wormlike nanoparticles localize mainly within immune cells, facilitating specific targeting, which is crucial for further increasing the efficacy of IBD treatment. These findings therefore demonstrate the untapped potential of wormlike nanoparticles not only to selectively target the inflamed human mucosa, but also to target key pro-inflammatory cells.
Collapse
Affiliation(s)
- Elena Gardey
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Central Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Zoltan Cseresnyes
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Fabian H Sobotta
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5612 AZ, the Netherlands
| | - Juliane Eberhardt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Drilon Haziri
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Central Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Philip C Grunert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Central Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Maren T Kuchenbrod
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Franka V Gruschwitz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Schumann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-University Medicine, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Nikolaus Gaßler
- Jena University Hospital, Section of Pathology, Institute of Forensic Medicine, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Marc T Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases and Central Endoscopy), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| |
Collapse
|
3
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
4
|
Shan B, Zhou Y, Yin M, Deng Y, Ge C, Liu Z, Zhou R, Dong Q, Zhou X, Yin L. Macrophage Membrane-Reversibly Cloaked Nanotherapeutics for the Anti-Inflammatory and Antioxidant Treatment of Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300667. [PMID: 37469217 DOI: 10.1002/smtd.202300667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Indexed: 07/21/2023]
Abstract
During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H2 O2 form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enable prolonged blood circulation and active joint accumulation after systemic administration in Zymosan A-induced arthritis mice. In the oxidative microenvironment of joints, CAT degrades H2 O2 to produce O2 bubbles, which shed off the outer membrane layer to expose the positively charged inner core, thus facilitating effective intracellular delivery into macrophages. siRNA-mediated TNF-α silencing and CAT-mediated H2 O2 scavenging then cooperate to inhibit inflammation and alleviate oxidative stress, remodeling the osteomicroenvironment and fostering tissue repair. This study provides an enlightened strategy to resolve the blood circulation/cell internalization dilemma of cell membrane-coated nanosystems, and it renders a promising modality for RA treatment.
Collapse
Affiliation(s)
- Bingchen Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yekun Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qirong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaozhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Mehta N, Mahigir A, Veronis G, Gartia MR. Hyperspectral dark field optical microscopy for orientational imaging of a single plasmonic nanocube using a physics-based learning method. NANOSCALE ADVANCES 2022; 4:4094-4101. [PMID: 36285219 PMCID: PMC9514559 DOI: 10.1039/d2na00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Rotational dynamics at the molecular level could provide additional data regarding protein diffusion and cytoskeleton formation at the cellular level. Due to the isotropic emission pattern of fluorescence molecules, it is challenging to extract rotational information from them during imaging. Metal nanoparticles show a polarization-dependent response and could be used for sensing rotational motion. Nanoparticles as an orientation sensing probe offer bio-compatibility and robustness against photo-blinking and photo-bleaching compared to conventional fluorescent molecules. Previously, asymmetric geometrical structures such as nanorods have been used for orientational imaging. Here, we show orientational imaging of symmetric geometrical structures such as 100 nm isolated silver nanocubes by coupling a hyperspectral detector and a focused ion beam (FIB)-fabricated correlating substrate. More than 100 nanocubes are analyzed to confirm spectral shifts in the scattering spectra due to variations in the orientation of the nanocubes with respect to the incoming light. Results are further validated using finite-difference time-domain simulations. Our observations suggest a novel strategy for high-throughput orientation imaging of nanoparticles.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| | - Amirreza Mahigir
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Georgios Veronis
- School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA
- Center for Computation and Technology, Louisiana State University Baton Rouge Louisiana 70803 USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, School of Electrical Engineering and Computer Science, Louisiana State University Baton Rouge Louisiana 70803 USA +1-225-578-5900
| |
Collapse
|