1
|
Hu R, Zhang Z, Tian L, Wei G, Wang Z, Wanunu M, Si W, Zhao Q. Quad-Nanopore Array Enables High-Resolution Identification of Four Single-Stranded DNA Homopolymers. ACS NANO 2025; 19:11403-11411. [PMID: 40072900 DOI: 10.1021/acsnano.5c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The solid-state nanopore technique holds the potential to develop mechanically stable and miniaturized DNA sequencing devices. However, the limited temporal resolution due to the high electric field inside the nanopore and the lack of an effective speed control strategy have hindered the realization of sequencing. Here, we reported a quad-array (four nanopores milled with ∼30 nm interpore spacing as a detection unit) that induced a redistribution of the electric field inside and outside the nanopore array and offered high-resolution discrimination of four ssDNA homopolymer types. We demonstrated that the quad-nanopore array well resolved the translocation events of polyA25 and had a length resolution of 20 nt. The molecular dynamic simulation confirmed the slowed-down translocations and superior performance of a quad-nanopore array. We found that the nanopore array configuration induced a direct reduction of the electric field inside the nanopore as well as an increase in the electrical field outside the nanopore due to electric field crosstalk. This dual benefit not only reduced the large driving force on DNA but also facilitated molecule capture through nanopores, therefore decreasing the voltage thresholds. Finally, the successful discrimination of four ssDNA homopolymer types (polyA25, polyT25, polyC25, and polyG10) was achieved using a voltage as low as 30 mV with a translocation speed of 8 μs/nt. These findings provide insights into nanopore arrays for discriminating short single-stranded nucleotides with high resolution and demonstrate promising potential for developing DNA sequencers that utilize nanopore arrays as sensing units.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Lifeng Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts02115, United States
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
2
|
Sun LZ, Liu XC. Autonomous walking dynamics of a nanorobot on a nanopore track driven by salt concentration gradients. J Chem Phys 2025; 162:054904. [PMID: 39898572 DOI: 10.1063/5.0248201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
The walking of a nanorobot with DNA legs requires a preset track to serve as footholds for the DNA legs and a track-matched driving mechanism to propel the nanorobot. Recently, a newly suggested track formed by multiple nanopores has garnered attraction due to its chemical stability. The nanorobot can be powered by biased leg-nanopore interactions along the walking direction. Here, we propose utilizing a salt concentration gradient along the nanopore track to induce an interaction bias based on different local ion screening effects on the nanopore charges. The nanorobot walking behaviors under different salt concentration gradients are studied through a combination of computational simulations and theoretical analyses. We find that the walking properties (such as velocity and directionality) highly depend on the local interactions experienced by the lagging leg. Under strong leg-nanopore attraction, the lagging leg needs a drag force provided by the leading leg to leave from the nanopore, while under weak attraction, the lagging leg can leave the nanopore without the assistance of the leading leg. Therefore, different walking modes can be observed under various ion conditions, leading to the complicated walking dynamics of the nanorobot driven by the salt concentration gradients.
Collapse
Affiliation(s)
- Li-Zhen Sun
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiu-Chong Liu
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
3
|
Wei J, Hong H, Wang X, Lei X, Ye M, Liu Z. Nanopore-based sensors for DNA sequencing: a review. NANOSCALE 2024; 16:18732-18766. [PMID: 39295590 DOI: 10.1039/d4nr01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Nanopore sensors, owing to their distinctive structural properties, can be used to detect biomolecular translocation events. These sensors operate by monitoring variations in electric current amplitude and duration, thereby enabling the calibration and distinction of various biomolecules. As a result, nanopores emerge as a potentially powerful tool in the field of deoxyribonucleic acid (DNA) sequencing. However, the interplay between testing bandwidth and noise often leads to the loss of part of the critical translocation signals, presenting a substantial challenge for the precise measurement of biomolecules. In this context, innovative detection mechanisms have been developed, including optical detection, tunneling current detection, and nanopore field-effect transistor (FET) detection. These novel detection methods are based on but beyond traditional nanopore techniques and each of them has unique advantages. Notably, nanopore FET sensors stand out for their high signal-to-noise ratio (SNR) and high bandwidth measurement capabilities, overcoming the limitations typically associated with traditional solid-state nanopore (SSN) technologies and thus paving the way for new avenues to biomolecule detection. This review begins by elucidating the fundamental detection principles, development history, applications, and fabrication methods for traditional SSNs. It then introduces three novel detection mechanisms, with a particular emphasis on nanopore FET detection. Finally, a comprehensive analysis of the advantages and challenges associated with both SSNs and nanopore FET sensors is performed, and then insights into the future development trajectories for nanopore FET sensors in DNA sequencing are provided. This review has two main purposes: firstly, to provide researchers with a preliminary understanding of advancements in the nanopore field, and secondly, to offer a comprehensive analysis of the fabrication techniques, transverse current detection principles, challenges, and future development trends in the field of nanopore FET sensors. This comprehensive analysis aims to help give researchers in-depth insights into cutting-edge advancements in the field of nanopore FET sensors.
Collapse
Affiliation(s)
- Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
- Department of Microelectronics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Xing Wang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| | - Xin Lei
- School of Chemistry, Beihang University, Beijing, 100084, China
| | - Minjie Ye
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Ma C, Zheng F, Xu W, Liu W, Xu C, Chen Y, Sha J. Surface Roughness Effects on Confined Nanoscale Transport of Ions and Biomolecules. SMALL METHODS 2024; 8:e2301485. [PMID: 38150654 DOI: 10.1002/smtd.202301485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Biological channels, especially membrane proteins, play a crucial role in metabolism, facilitating the transport of nutrients and other materials across cell membranes in a bio-electrolyte environment. Artificial nanopores are employed to study ion and biomolecule transport behavior inside. While the non-specific interaction between the nanopore surface and transport targets has garnered significant attention, the impact of surface roughness is overlooked. In this study, Nanopores with different levels of inner surface roughness is created by adjusting the FIB (Focus Ion Beam) fabrication parameters. Experiments and molecular dynamics (MD) simulations are employed to demonstrate that greater roughness results from larger FIB beam currents and shorter processing times. Lower roughness increases the capture rate of biomolecules, while greater roughness enhances the normalized blockade current (ΔI/I0). The phenomenon of rougher nanopores are attributed to a barrier-dominated capture mechanism and more likely to induce DNA folding. This transport barrier exists in rough nanopores by utilizing steer molecular dynamics (SMD) simulations to investigate the force profile of a dA10 DNA molecule during translocation is demonstrated. This work illustrates how surface roughness influences the ionic current features and the translocation of biomolecules, paving a new way for tunning the molecule transport in nanopores.
Collapse
Affiliation(s)
- Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Changhui Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
5
|
Si W, Chen H, Lin X, Wu G, Zhao J, Sha J. Actuation mechanism of a nanoscale drilling rig based on nested carbon nanotubes. NANOSCALE 2024; 16:10414-10427. [PMID: 38742415 DOI: 10.1039/d4nr00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the increasing emphasis on health and the continuous improvement of medical standards, more and more micro/nano devices are being used in the medical field. However, the existing micro/nano devices cannot effectively solve various problems encountered in medical processes and achieve specific therapeutic effects. Based on this, this article designs a new type of nanoscale drilling rig. The nanoscale drilling rig is composed of double-layer nested carbon nanotubes with multiple electrodes, and is powered by an external power source, making it easy to perform long-term surgery in the human body. Through coding strategies, we can adjust the surface charge density and distribution of the nanoscale drilling rig, thereby controlling its periodical rotation and achieving precise medical treatment. In addition, in order to control the length of the nanoscale drill bit, meet the treatment needs of different parts of the human body, and reduce damage to the human body, we have designed a structure of ion electric double layers so that the drill bit can be fixed in different positions, reducing the risk of treatment to a certain extent. This drilling rig enriches the functions of micro/nano devices, which is beneficial for the development of the medical industry.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Haonan Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Xiaojing Lin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| |
Collapse
|
6
|
Si W, Zhang Z, Chen J, Wu G, Zhang Y, Sha J. Protein Deceleration and Sequencing Using Si 3N 4-CNT Hybrid Nanopores. Chemphyschem 2024; 25:e202300866. [PMID: 38267372 DOI: 10.1002/cphc.202300866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions and is of utmost importance in molecular diagnostics and medication development. Nanopores have become an effective tool for single molecule sensing, however, the weak charge and non-uniform charge distribution of protein make capturing and sensing very challenging, which poses a significant obstacle to the development of nanopore-based protein sequencing. In this study, to facilitate capturing of the unfolded protein, highly charged peptide was employed in our simulations, we found that the velocity of unfolded peptide translocating through a hybrid nanopore composed of silicon nitride membrane and carbon nanotube is much slower compared to bare silicon nitride nanopore, it is due to the significant interaction between amino acids and the surface of carbon nanotube. Moreover, by introducing variations in the charge states at the boundaries of carbon nanotube nanopores, the competition and combination of the electrophoretic and electroosmotic flows through the nanopores could be controlled, we then successfully regulated the translocation velocity of unfolded proteins through the hybrid nanopores. The proposed hybrid nanopore effectively retards the translocation velocity of protein through it, facilitates the acquisition of ample information for accurate amino acid identification.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
7
|
Sun LZ, Ying YJ. Moving dynamics of a nanorobot with three DNA legs on nanopore-based tracks. NANOSCALE 2023; 15:15794-15809. [PMID: 37740362 DOI: 10.1039/d3nr03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
DNA nanorobots have garnered increasing attention in recent years due to their unique advantages of modularity and algorithm simplicity. To accomplish specific tasks in complex environments, various walking strategies are required for the DNA legs of the nanorobot. In this paper, we employ computational simulations to investigate a well-designed DNA-legged nanorobot moving along a nanopore-based track on a planar membrane. The nanorobot consists of a large nanoparticle as the robot core and three single-stranded DNAs (ssDNAs) as the robot legs. The nanopores linearly embedded in the membrane serve as the toeholds for the robot legs. A charge gradient along the pore distribution mainly powers the activation of the nanorobot. The nanorobot can move in two modes: a walking mode, where the robot legs sequentially enter the nanopores, and a jumping mode, where the robot legs may skip a nanopore to reach the next one. Moreover, we observe that the moving dynamics of the nanorobot on the nanopore-based tracks depends on pore-pore distance, pore charge gradient, external voltage, and leg length.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Yao-Jun Ying
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
8
|
Si W, Lin X, Wang L, Wu G, Zhang Y, Chen Y, Sha J. Nanopore actuation of a DNA-tracked nanovehicle. NANOSCALE 2023; 15:14659-14668. [PMID: 37622615 DOI: 10.1039/d3nr02633g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
As a kind of nanomachine that has great potential for applications in nanoscale sensing and manipulation, nanovehicles with unique shapes and functions have received extensive attention in recent years. Different from the existing common method of using synthetic chemistry to design and manufacture a nanovehicle, here we theoretically report a molecularly assembled DNA-tracked nanovehicle that can move on a solid-state surface using molecular dynamics simulations. A graphene membrane with four nanopores acts as the chassis of the nanoscale vehicle, and two circular ssDNAs across the nanopores serve as the wheels. The electroosmotic flows induced by independently charged nanopores with different surface charge densities under external electric fields were found to be the main power to actuate the controlled rotary motion of circular ssDNAs across every two nanopores. By tuning the rotary speed of each circular ssDNA, the linear and turning movements of the designed nanovehicle were realized. The designed nanovehicle makes it possible to have access to almost everywhere in the human body, which would lead to significant breakthroughs in the fields of nanoscale surgery, drug delivery and so on. The research not only enriches the family of nanorobots, but also opens another way for designing nanovehicles.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Xiaojing Lin
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Liwei Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China.
| |
Collapse
|
9
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
10
|
Jiang D, Liu S, Tang W. Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review. MICROMACHINES 2022; 13:1659. [PMID: 36296012 PMCID: PMC9611947 DOI: 10.3390/mi13101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Non-spherical shape is a general appearance feature for bioparticles. Therefore, a mechanical mechanism study of non-spherical particle migration in a microfluidic chip is essential for more precise isolation of target particles. With the manipulation of non-spherical particles, refined disease detection or medical intervention for human beings will be achievable in the future. In this review, fabrication and manipulation of non-spherical particles are discussed. Firstly, various fabrication methods for non-spherical microparticle are introduced. Then, the active and passive manipulation techniques for non-spherical particles are briefly reviewed, including straight inertial microchannels, secondary flow inertial microchannels and deterministic lateral displacement microchannels with extremely high resolution. Finally, applications of viscoelastic flow are presented which obviously increase the precision of non-spherical particle separation. Although various techniques have been employed to improve the performance of non-spherical particle manipulation, the universal mechanism behind this has not been fully discussed. The aim of this review is to provide a reference for non-spherical particle manipulation study researchers in every detail and inspire thoughts for non-spherical particle focused device design.
Collapse
Affiliation(s)
- Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Danyang 212300, China
| | - Shaowei Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|