1
|
Mei H, Zhang F, Zhou T, Zhang T. Pulse-Driven MEMS NO 2 Sensors Based on Hierarchical In 2O 3 Nanostructures for Sensitive and Ultra-Low Power Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:7188. [PMID: 39598965 PMCID: PMC11598139 DOI: 10.3390/s24227188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
As the mainstream type of gas sensors, metal oxide semiconductor (MOS) gas sensors have garnered widespread attention due to their high sensitivity, fast response time, broad detection spectrum, long lifetime, low cost, and simple structure. However, the high power consumption due to the high operating temperature limits its application in some application scenarios such as mobile and wearable devices. At the same time, highly sensitive and low-power gas sensors are becoming more necessary and indispensable in response to the growth of the environmental problems and development of miniaturized sensing technologies. In this work, hierarchical indium oxide (In2O3) sensing materials were designed and the pulse-driven microelectromechanical system (MEMS) gas sensors were also fabricated. The hierarchical In2O3 assembled with the mass of nanosheets possess abundant accessible active sites. In addition, compared with the traditional direct current (DC) heating mode, the pulse-driven MEMS sensor appears to have the higher sensitivity for the detection of low-concentrations of nitrogen dioxide (NO2). The limit of detection (LOD) is as low as 100 ppb. It is worth mentioning that the average power consumption of the sensor is as low as 0.075 mW which is one three-hundredth of that in the DC heating mode. The enhanced sensing performances are attributed to loose and porous structures and the reducing desorption of the target gas driven by pulse heating. The combination of morphology design and pulse-driven strategy makes the MEMS sensors highly attractive for portable equipment and wearable devices.
Collapse
Affiliation(s)
- Haixia Mei
- Key Lab Intelligent Rehabil & Barrier Free Disable (Ministry of Education), Changchun University, Changchun 130022, China;
| | - Fuyun Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
2
|
Han J, Gu G, Gao Y, Yu N, Zhou W, Wang Y, Kong D, Gao Y, Lu G. Prototype Alarm Integrating Pulse-Driven Nitrogen Dioxide Sensor Based on Holey Graphene Oxide/In 2O 3. ACS Sens 2024; 9:5425-5435. [PMID: 39298457 DOI: 10.1021/acssensors.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
NO2 seriously threatens human health and the ecological environment. However, the fabrication of highly sensitive NO2 sensors with rapid response/recovery rates, low detection limits, and ease of integration remains a challenge. Herein, benefiting from the fast carrier transfer and rich active sites, holey graphene oxide (HGO) was adopted to functionalize the In2O3 nanosheet to construct NO2 gas sensors. Characterization and theoretical calculations established the merits of HGO decoration in the NO2 sensing. The optimal sample, 0.5 wt % HGO/In2O3-sheet, exhibited superior sensing properties, resulting in a 1.37-fold improvement in response to 1 ppm of NO2 compared to the GO/In2O3 counterpart. Gas-sensing kinetics analysis revealed its lower activation energy and higher kinetic rate constants. Importantly, pulsed-temperature modulation was employed to decouple the gas adsorption from surface activation processes, achieving an ultrahigh response of 2776 to 1 ppm of NO2 for the 0.5 wt % HGO/In2O3-sheet sensor. Compared to the isothermal mode, this strategy enhanced the response value by 1.6 times, reduced the response/recovery time by 33%/70%, and enabled the detection of NO2 concentrations as low as 1 ppb. Finally, an NO2 monitoring alarm system based on the 0.5 wt % HGO/In2O3-sheet sensor with pulsed-temperature modulation was demonstrated for hazard warnings.
Collapse
Affiliation(s)
- Jiayin Han
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Guoxuan Gu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Yuan Gao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Ning Yu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Weirong Zhou
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Yong Wang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Dehao Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Yubing Gao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin 130012, China
| |
Collapse
|
3
|
Liu L, Yung KF, Yang H, Liu B. Emerging single-atom catalysts in the detection and purification of contaminated gases. Chem Sci 2024; 15:6285-6313. [PMID: 38699256 PMCID: PMC11062113 DOI: 10.1039/d4sc01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Single atom catalysts (SACs) show exceptional molecular adsorption and electron transfer capabilities owing to their remarkable atomic efficiency and tunable electronic structure, thereby providing promising solutions for diverse important processes including photocatalysis, electrocatalysis, thermal catalysis, etc. Consequently, SACs hold great potential in the detection and degradation of pollutants present in contaminated gases. Over the past few years, SACs have made remarkable achievements in the field of contaminated gas detection and purification. In this review, we first provide a concise introduction to the significance and urgency of gas detection and pollutant purification, followed by a comprehensive overview of the structural feature identification methods for SACs. Subsequently, we systematically summarize the three key properties of SACs for detecting contaminated gases and discuss the research progress made in utilizing SACs to purify polluted gases. Finally, we analyze the enhancement mechanism and advantages of SACs in polluted gas detection and purification, and propose strategies to address challenges and expedite the development of SACs in polluted gas detection and purification.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Ka-Fu Yung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Hongbin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR 999007 China
- Department of Chemistry, Hong Kong Institute of Clean Energy & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
4
|
Li X, Wu Z, Song X, Li D, Liu J, Zhang J. WO 3 Nanoplates Decorated with Au and SnO 2 Nanoparticles for Real-Time Detection of Foodborne Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:719. [PMID: 38668213 PMCID: PMC11054436 DOI: 10.3390/nano14080719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Nowadays, metal oxide semiconductor gas sensors have diverse applications ranging from human health to smart agriculture with the development of Internet of Things (IoT) technologies. However, high operating temperatures and an unsatisfactory detection capability (high sensitivity, fast response/recovery speed, etc.) hinder their integration into the IoT. Herein, a ternary heterostructure was prepared by decorating WO3 nanoplates with Au and SnO2 nanoparticles through a facial photochemical deposition method. This was employed as a sensing material for 3-hydroxy-2-butanone (3H-2B), a biomarker of Listeria monocytogenes. These Au/SnO2-WO3 nanoplate-based sensors exhibited an excellent response (Ra/Rg = 662) to 25 ppm 3H-2B, which was 24 times higher than that of pure WO3 nanoplates at 140 °C. Moreover, the 3H-2B sensor showed an ultrafast response and recovery speed to 25 ppm 3H-2B as well as high selectivity. These excellent sensing performances could be attributed to the rich Au/SnO2-WO3 active interfaces and the excellent transport of carriers in nanoplates. Furthermore, a wireless portable gas sensor equipped with the Au/SnO2-WO3 nanoplates was assembled, which was tested using 3H-2B with known concentrations to study the possibilities of real-time gas monitoring in food quality and safety.
Collapse
Affiliation(s)
- Xueyan Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China (J.Z.)
| | - Zeyi Wu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China (J.Z.)
| | - Xiangyu Song
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China (J.Z.)
| | - Denghua Li
- Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajia Liu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China (J.Z.)
| | - Jiatao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, China (J.Z.)
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Beijing Institute of Technology, Beijing 100081, China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Zhang R, Deng Z, Li M, Cao K, Chang J, Rong D, Wang S, Huang S, Meng G. Delafossite CuGaO 2-Based Chemiresistive Sensor for Sensitive and Selective Detection of Dimethyl Disulfide. ACS Sens 2024; 9:1410-1418. [PMID: 38456391 DOI: 10.1021/acssensors.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Dimethyl disulfide (DMDS) is a common odor pollutant with an extremely low olfactory threshold. Highly sensitive and selective detection of DMDS in ambient humid air background, by metal oxide semiconductor (MOS) sensors, is highly desirable to address the increased public concern for health risk. However, it has still been a critical challenge up to now. Herein, p-type delafossite CuGaO2 has been proposed as a promising DMDS sensing material owing to its striking hydrophobicity (revealed by water contact angle measurement) and excellent partial catalytic oxidation properties (indicated by mass spectroscopy). The present CuGaO2 sensor shows a selective DMDS response, with satisfied humidity resistance performance and long-term stability at a relatively low operation temperature of 140 °C. An ultrahigh response of 100 to 10 ppm DMDS and a low limit of detection of 3.3 ppb could be achieved via a pulsed temperature modulation strategy. A smart sensing system based on a CuGaO2 sensor has been developed, which could precisely monitor DMDS vapor in ambient humid air, even with the presence of multiple interfering gases, demonstrating the practical application capability of MOS sensors for environmental odor monitoring.
Collapse
Affiliation(s)
- Ruofan Zhang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| | - Meng Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Kaifa Cao
- Anhui Kechuang Zhongguang Technology Co., Ltd., Hefei 230000, China
| | - Junqing Chang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Dandan Rong
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shuhua Huang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
6
|
Li M, Chananonnawathorn C, Pan N, Limwichean S, Deng Z, Horprathum M, Chang J, Wang S, Nakajima H, Klamchuen A, Li L, Meng G. Prompt Electronic Discrimination of Gas Molecules by Self-Heating Temperature Modulation. ACS Sens 2024; 9:206-216. [PMID: 38114442 DOI: 10.1021/acssensors.3c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Though considerable progress has been achieved on gas molecule recognition by electronic nose (e-nose) comprised of nonselective (metal oxide) semiconductor chemiresistors, extracting adequate molecular features within short time (<1 s) remains a big obstacle, which hinders the emerging e-nose applications in lethal or explosive gas warning. Herein, by virtue of the ultrafast (∼20 μs) thermal relaxation time of self-heated WO3-based chemiresistors fabricated via oblique angle deposition, instead of external heating, self-heating temperature modulation has been proposed to generate sufficient electrical response features. Accurate discrimination of 12 gases (including 3 xylene isomers with the same function group and molecular weight) has been readily achieved within 0.5-1 s, which is one order faster than the state-of-the-art e-noses. A smart wireless e-nose, capable of instantaneously discriminating target gas in ambient air background, has been developed, paving the way for the practical applications of e-nose in the area of homeland security and public health.
Collapse
Affiliation(s)
- Meng Li
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Chanunthorn Chananonnawathorn
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Ning Pan
- University of Science and Technology of China, Hefei 230026, China
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Saksorn Limwichean
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Mati Horprathum
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Hideki Nakajima
- Synchrotron Light Research Institute, Maung 30000, Nakhon Ratchasima, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
7
|
Dai T, Deng Z, Li M, Wang S, Chen M, Meng G. Voltage driven chemiresistor with ultralow power consumption based on self-heating bridged WO 3 nanowires. NANOSCALE 2023; 15:2162-2170. [PMID: 36648490 DOI: 10.1039/d2nr05324a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal oxide semiconductor (MOS)-based chemiresistors have been widely used for detecting harmful gases in many industrial and indoor/outdoor applications, which possess the advantages of small size, low cost, integratability, and ease of use. However, power consumption has become a critical parameter for practical applications. Several methods have been explored to reduce power consumption including reducing the operation temperature, use of micro-electro-mechanical systems (MEMS), and self-heating working mode. Among them, the self-heating working mode has attracted significant attention. Herein, a facile approach of modulating bridged NW chemiresistor by Joule heating effect is proposed to combine both the superiority of single crystal nanowire (NW) carrier channels and power consumption optimization of the self-heating mode. The WO3-bridged NW chemiresistors and WO3 film NW chemiresistors are both constructed to investigate gas responses and power consumption. Substantially magnified electrical responses (Rg/Ra) of WO3 NW chemiresistor toward NO2 is demonstrated by constructing a bridged structure. Under the optimal external heating condition, the responses of chemiresistors toward 5 ppm NO2 can be boosted from 369.7 (film NW) to 1089.7 (bridged NW). The responses to 5 ppm NO2 under the self-heating mode also can be boosted from 13.6 (film NW) to 24.6 (bridged NW) with a drastically declined power consumption. Self-heating bridged NWs allows for localizing the Joule heat within the nanojunction, and thus substantially lowers the power consumption to 0.13 μW (300 °C). This provides an additional opportunity for reducing power consumption of oxide chemiresistors for air quality monitoring in future.
Collapse
Affiliation(s)
- Tiantian Dai
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China.
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China.
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China.
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China.
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Mengxiao Chen
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 311100, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, China.
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
8
|
Zeng Y, Chen G, Wu C, Pan X, Lin F, Xu L, Zhao F, He Y, He G, Chen Q, Sun D, Hai Z. Thin-Film Platinum Resistance Temperature Detector with a SiCN/Yttria-Stabilized Zirconia Protective Layer by Direct Ink Writing for High-Temperature Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2172-2182. [PMID: 36573702 DOI: 10.1021/acsami.2c18611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In situ temperature monitoring of curved high-temperature components in extreme environments is challenging for a variety of applications in fields such as aero engines and gas turbines. Recently, extrusion-based direct ink writing (DIW) has been utilized to fabricate platinum (Pt) resistance temperature detectors (RTDs). However, the current Pt RTD prepared by DIW technology suffers from a limited temperature range and poor high-temperature stability. Here, DIW technology and yttria-stabilized zirconia (YSZ)-modified precursor ceramic film packaging have been used to build a Pt RTD with high-temperature resistance, small disturbance, and high stability. The results indicate that the protective layer formed by the liquid phase anchors the Pt particles and reduces the agglomeration and volatilization of the Pt sensitive layer at high temperature. Attributed to the SiCN/YSZ protective layer, the temperature resistance curve of the Pt RTD in the range of 50-800 °C has little deviation from the fitting curve, and the fitting correlation coefficient is above 0.9999. Interestingly, the Pt RTD also has high repeatability and stability. The high temperature resistance drift rate is only 0.05%/h after 100 h of long-term testing at 800 °C and can withstand butane flame up to ∼1300 °C without damage. Moreover, the Pt RTD can be conformally deposited on the outer ring of aerospace bearings by DIW technology and then realize on-site, nondestructive, and real-time monitoring of bearing temperature. The fabricated Pt RTD shows great potential for high-temperature applications, and the novel technology proposed provides a feasible pathway for temperature monitoring of aeroengine internal curved hot-end components.
Collapse
Affiliation(s)
- Yingjun Zeng
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Guochun Chen
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Chao Wu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Xiaochuan Pan
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Fan Lin
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Lida Xu
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Fuxin Zhao
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Yingping He
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Gonghan He
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Qinnan Chen
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Daoheng Sun
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| | - Zhenyin Hai
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen361005, P. R. China
- Fujian Micro/Nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen361102, P. R. China
| |
Collapse
|