1
|
Nam KJ, Mohamed AMO, Seong J, An H, Kang DY, Economou IG, Lee JS. Cobalt-Based ZIF Composite Membranes: In Situ Defect Engineering for Enhanced Water Stability and Gas Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409515. [PMID: 39679852 DOI: 10.1002/smll.202409515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Porous coordination polymers with excellent molecular sieving ability, high dispersibility, and good compatibility with engineered polymer matrices hold promise for various industrial applications, such as gas separation and battery separators. Here, an in situ defect engineering approach is proposed for highly processable cobalt (Co)-based zeolitic imidazolate frameworks (ZIFs) with enhanced molecular sieving ability and water stability. By varying alkylamine (AA) modulators, the pore structures and textural properties of ZIFs can be fine-tuned. The resulting high-loading composite membrane exhibits excellent C3H6/C3H8 separation performance and mechanical properties. This in situ defect engineering approach enables efficient interfacial engineering for high-performance composite membranes.
Collapse
Affiliation(s)
- Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Amro M O Mohamed
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, 23874, Qatar
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Institute of Energy and Environmental Technology, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
2
|
Seong J, Nam KJ, An H, Yu S, Shin JH, Kim KC, Kang SG, Reddy KSSVP, Hong DY, Kim SJ, Lee JS. Highly Permeable Mixed Matrix Membranes for Gas Separation via Dual Defect-Engineered Zeolitic Imidazolate Framework-8. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401594. [PMID: 38860544 DOI: 10.1002/smll.202401594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Defect engineering of metal-organic frameworks (MOFs) is a promising strategy for tailoring the interfacial characteristics between MOFs and polymers, aiming to create high-performance mixed matrix membranes (MMMs). This study introduces a new approach using dual defective alkylamine (AA)-modulated zeolitic imidazolate framework-8 (DAZIF-8), to develop high-flux MMMs. Tributylamine (TBA) and triethylamine (TEA) monodentate ligands coordinate with zinc ions in varying compositions. A mixture of Zn(CH3COO)2·2H2O:2-methylimidazole (Mim):AA in a 1:1.75:5 molar ratio facilitates high-yield coordination between Zn and multiple organic ligands, including Zn-Mim, Zn-TEA, and Zn-TBA (>80%). Remarkably, DAZIF-8 containing 3 mol% TBA and 2 mol% TEA exhibits exceptional characteristics, such as a Brunauer-Emmett-Teller surface area of 1745 m2 g-1 and enhanced framework rigidity. Furthermore, dual Zn-AA coordination sites on the framework's outer surface enhance compatibility with the polyimide (PI) matrix through electron donor-acceptor interactions, enabling the fabrication of high-loading MMMs with excellent mechanical durability. Importantly, the PI/DAZIF-8 (60/40 w/w) MMM demonstrates an unprecedented 759% enhancement in ethylene (C2H4) permeability (281 Barrer) with a moderate ethylene/ethane (C2H4/C2H6) selectivity of 2.95 compared to the PI, surpassing the polymeric upper limit for C2H4/C2H6 separation.
Collapse
Affiliation(s)
- Jeongho Seong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Jin Nam
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Heseong An
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemical Engineering, Sunchon National University, Jeollanam-do, 57922, Republic of Korea
| | - Seungho Yu
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ju Ho Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ki Chul Kim
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sung Gu Kang
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - K S S V Prasad Reddy
- School of Chemical Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Do-Young Hong
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
3
|
Sung YH, Senthil Raja D, Huang JH, Tsai DH. Microfluidic-Aerosol Hyphenated Synthesis of Metal-Organic Framework-Derived Hybrid Catalysts for CO 2 Utilization. SMALL METHODS 2024; 8:e2301435. [PMID: 38161255 DOI: 10.1002/smtd.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A new and efficient technique is developed by combining the hyphenated microfluidic- and aerosol-based synthesis with the coupled differential mobility analysis for the effective and continuous synthesis and simultaneous analysis of metal-organic frameworks (MOFs)-derived hybrid nanostructured products. HKUST-1, a copper-based MOF, is chosen as the representative to fabricate Cu-based hybrid catalysts for reverse water-gas shift (RWGS) reaction, an effective route for CO2 utilization. The effect of precursor concentration and carrier selection on the properties of the resulting products, including mobility size distribution, crystallization degree, surface area, and metal dispersion are investigated, as well as the correlation between the material properties of the synthesized catalysts and their catalytic performance in RWGS reaction in terms of conversion ratio/rate, selectivity, and operational stability. The results indicate that the continuous microfluidic droplet system can successfully synthesize MOF colloids, followed by the continuous production of MOF-derived hybrid materials through the tandem aerosol spray-drying-reaction system. High catalytic activity and low initiate temperature toward RWGS (turnover frequency = 0.0074 s-1; 450 °C) are achievable. The work facilitates the production and the designed concept of relevant MOF-derived hybrid nanostructured catalysts in the continuous synthesis system and the enhancement of applications in CO2 capture and utilization.
Collapse
Affiliation(s)
- Yi-Hsuan Sung
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| |
Collapse
|
4
|
Yu C, Cen X, Zhang Z, Sun Y, Xue W, Qiao Z, Guiver MD, Zhong C. Step-Nucleation In Situ Self-Repair to Prepare Rollable Large-Area Ultrathin MOF Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307013. [PMID: 37643466 DOI: 10.1002/adma.202307013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Ultrathin membranes with ultrahigh permeance and good gas selectivity have the potential to greatly decrease separation process costs, but it requires the practical preparation of large area membranes for implementation. Metal-organic frameworks (MOFs) are very attractive for membrane gas separation applications. However, to date, the largest MOF membrane area reported in the literature is only about 100 cm2 . In the present study, a new step-nucleation in situ self-repair strategy is proposed that enables the preparation of large-area (2400 cm2 ) ultrathin and rollable MOF membranes deposited on an inexpensive flexible polymer membrane support layer for the first time, combining a polyvinyl alcohol (PVA)-metal-ion layer and a pure metal-ion layer. The main role of the pure metal-ion layer is to act as the main nucleation sites for MOF membrane growth, while the PVA-metal-ion layer acts as a slow-release metal-ion source, which supplements MOF crystal nucleation to repair any defects occurring. Membrane modules are necessary components for membrane applications, and spiral-wound modules are among the most common module formats that are widely applied in gas separation. A 4800 cm2 spiral-wound membrane module was successfully prepared, demonstrating the practical implementation of large-area MOF membranes.
Collapse
Affiliation(s)
- Caijiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xixi Cen
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
5
|
Kang DY, Lee JS. Challenges in Developing MOF-Based Membranes for Gas Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2871-2880. [PMID: 36802624 DOI: 10.1021/acs.langmuir.2c03458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for membrane gas separation. MOF-based membranes include pure MOF membranes and MOF-based mixed matrix membranes (MMMs). This Perspective discusses the challenges for the next stage of the development of MOF-based membranes based on research conducted in the past decade. We focused on three major issues associated with pure MOF membranes. First, some MOF compounds have been overstudied, despite the availability of numerous MOFs. Second, gas adsorption and diffusion in MOFs are often independently investigated. The correlation between adsorption and diffusion has seldom been discussed. Third, we identify the importance of characterizing the gas distribution in MOFs to understand the structure-property relationships for gas adsorption and diffusion in MOF membranes. For MOF-based MMMs, engineering the MOF-polymer interface is essential for achieving the desired separation performance. Various approaches to modify the MOF surface or polymer molecular structure have been proposed to improve the MOF-polymer interface. Herein, we present defect engineering as a facile and efficient approach for engineering the MOF-polymer interfacial morphology and its extended application for various gas separations.
Collapse
Affiliation(s)
- Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|