1
|
Chen L, Yuan J, He X, Zheng F, Lu X, Xiang S, Lu Q. Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films. SMALL METHODS 2024; 8:e2301517. [PMID: 38221818 DOI: 10.1002/smtd.202301517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Circularly polarized luminescence (CPL) materials are highly demanded due to their great potential in optoelectronic and chiroptical elements. However, the preparation of CPL films with high luminescence dissymmetry factors (glum) remains a formidable task, which impedes their practical application in film-based devices. Herein, a facile strategy to prepare solid CPL film with a high glum through exogenous chiral induction and amplification of liquid crystal polymers is proposed. Amplification and reversion of the CPL appear when the films are annealed at the chiral nematic liquid crystalline temperature and the maximal glum up to 0.30 due to the enhancement of selective reflection. Thermal annealing treatment at different liquid crystalline states facilitates the formation of the chiral liquid phase and adjusts the circularly polarized emission. This work not only provides a straightforward and versatile platform to construct organic films capable of exhibiting strong circularly polarized emission but also is helpful in understanding the exact mechanism for the liquid crystal enhancement of CPL performance.
Collapse
Affiliation(s)
- Lianjie Chen
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jianan Yuan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Xiaojie He
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zheng
- School of Chemical Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| | - Shuangfei Xiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China
| |
Collapse
|
2
|
Ariga K. Liquid-Liquid Interfacial Nanoarchitectonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305636. [PMID: 37641176 DOI: 10.1002/smll.202305636] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Science in the small world has become a crucial key that has the potential to revolutionize materials technology. This trend is embodied in the postnanotechnology concept of nanoarchitectonics. The goal of nanoarchitectonics is to create bio-like functional structures, in which self-organized and hierarchical structures are working efficiently. Liquid-liquid interface like environments such as cell membrane surface are indispensable for the expression of biological functions through the accumulation and organization of functional materials. From this viewpoint, it is necessary to reconsider the liquid-liquid interface as a medium where nanoarchitectonics can play an active role. In this review, liquid-liquid interfacial nanoarchitectonics is classified by component materials such as organic, inorganic, carbon, and bio, and recent research examples are discussed. Examples discussed in this paper include molecular aggregates, supramolecular polymers, conductive polymers film, crystal-like capsules, block copolymer assemblies, covalent organic framework (COF) films, complex crystals, inorganic nanosheets, colloidosomes, fullerene assemblies, all-carbon π-conjugated graphite nanosheets, carbon nanoskins and fullerphene thin films at liquid-liquid interfaces. Furthermore, at the liquid-liquid interface using perfluorocarbons and aqueous phases, cell differentiation controls are discussed with the self-assembled structure of biomaterials. The significance of liquid-liquid interfacial nanoarchitectonics in the future development of materials will then be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha Kashiwa, Tokyo, 277-8561, Japan
| |
Collapse
|
3
|
Mei W, Li W, Zhang A. Supramolecular assembly of dendronized diacetylenes into thermoresponsive chiral fibers and their covalent fixation through topochemical polymerization. J Colloid Interface Sci 2024; 669:314-326. [PMID: 38718585 DOI: 10.1016/j.jcis.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
By combination of dendritic topological structures with photopolymerizable diacetylene, here we report on supramolecular chiral assembly of the dendronized diacetylenes in water. These dendronized diacetylenes are constituted with three-fold dendritic oligoethylene glycols (OEGs), bridged with a dipeptide from phenylalanine and glycine. These dendronized amphiphiles exhibit intensive propensity to aggregate in water and form helical fibers, which show characteristic thermoresponsive behavior with phase transition temperatures dominated by hydrophilicity of the dendritic OEGs. Topochemical polymerization of these supramolecular fibers through UV irradiation transfers them into the covalent helical dendronized polydiacetylenes. Chirality of these dendronized polydiacetylenes can be mediated through the thermally-induced phase transitions, but is also intriguingly dependent on vortex via stirring. Through stirring the solutions, chiralities of the dendronized polydiacetylenes are inverted, which can be reversibly recovered after keeping still the solution. Hydrogels are formed from these dendronized diacetylenes through concentration-enhanced interactions between the supramolecular fibers. Their mechanical properties can be greatly increased through thermally-enhanced interactions between the fibers with storage moduli increased from 20 Pa to a few hundred Pa. In addition, through photo-polymerization, the supramolecular fibers are transferred into covalent dendronized polydiacetylenes, and the corresponding hydrogels show much improved mechanical properties with storage moduli about 10 kPa.
Collapse
Affiliation(s)
- Wenli Mei
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
4
|
Cheng AC, Pin C, Sunaba Y, Sugiyama T, Sasaki K. Nanoscale Helical Optical Force for Determining Crystal Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312174. [PMID: 38586919 DOI: 10.1002/smll.202312174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The deterministic control of material chirality has been a sought-after goal. As light possesses intrinsic chirality, light-matter interactions offer promising avenues for achieving non-contact, enantioselective optical induction, assembly, or sorting of chiral entities. However, experimental validations are confined to the microscale due to the limited strength of asymmetrical interactions within sub-diffraction limit ranges. In this study, a novel approach is presented to facilitate chirality modulation through chiral crystallization using a helical optical force field originating from localized nanogap surface plasmon resonance. The force field emerges near a gold trimer nanogap and is propelled by linear and angular momentum transfer from the incident light to the resonant nanogap plasmon. By employing Gaussian and Laguerre-Gaussian incident laser beams, notable enantioselectivity is achieved through low-power plasmon-induced chiral crystallization of an organic compound-ethylenediamine sulfate. The findings provide new insights into chirality transmission orchestrated by the exchange of linear and angular momentum between light and nanomaterials.
Collapse
Affiliation(s)
- An-Chieh Cheng
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Christophe Pin
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuji Sunaba
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Teruki Sugiyama
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu, 300093, Taiwan
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Keiji Sasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
5
|
Mori T. Mechanical control of molecular machines at an air-water interface: manipulation of molecular pliers, paddles. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2334667. [PMID: 38628979 PMCID: PMC11020556 DOI: 10.1080/14686996.2024.2334667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Many artificial molecular machines have been synthesized, and various functions have been expressed by changing their molecular conformations. However, their structures are still simple compared with those of biomolecular machines, and more energy is required to control them. To design artificial molecular machines with more complex structures and higher functionality, it is necessary to combine molecular machines with simple movements such as components. This means that the motion of individual molecular machines must be precisely controlled and observed in various environments. At the air - water interface, the molecular orientation and conformation can be controlled with little energy as thermal fluctuations. We designed various molecular machines and controlled them using mechanical stimuli at the air - water interface. We also controlled the transfer of forces to the molecular machines in various lipid matrices. In this review, we describe molecular pliers with amphiphilic binaphthyl, molecular paddles with binuclear platinum complexes, and molecular rotors with julolidine and BODIPY that exhibit twisted intramolecular charge transfer.
Collapse
Affiliation(s)
- Taizo Mori
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
6
|
Ariga K. Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:271. [PMID: 38204123 PMCID: PMC10780059 DOI: 10.3390/ma17010271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of "molecular manipulation, arrangement, and assembly" and "material production" will be discussed in the first two sections. Then, in the following section, "fullerene assembly: from zero-dimensional unit to advanced materials", we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Chiba, Japan
| |
Collapse
|
7
|
Ariga K. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. MICROMACHINES 2022; 14:mi14010025. [PMID: 36677086 PMCID: PMC9860627 DOI: 10.3390/mi14010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
This review will focus on micromachines and microrobots, which are objects at the micro-level with similar machine functions, as well as nano-level objects such as molecular machines and nanomachines. The paper will initially review recent examples of molecular machines and microrobots that are not limited to interfaces, noting the diversity of their functions. Next, examples of molecular machines and micromachines/micro-robots functioning at the air-water interface will be discussed. The behaviors of molecular machines are influenced significantly by the specific characteristics of the air-water interface. By placing molecular machines at the air-water interface, the scientific horizon and depth of molecular machine research will increase dramatically. On the other hand, for microrobotics, more practical and advanced systems have been reported, such as the development of microrobots and microswimmers for environmental remediations and biomedical applications. The research currently being conducted on the surface of water may provide significant basic knowledge for future practical uses of molecular machines and microrobots.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|