1
|
Xi M, Zhang X, Liu H, Xu B, Zheng Y, Du Y, Yang L, Ravi SK. Cobalt-Ion Superhygroscopic Hydrogels Serve as Chip Heat Sinks Achieving a 5 °C Temperature Reduction via Evaporative Cooling. SMALL METHODS 2024; 8:e2301753. [PMID: 38634244 PMCID: PMC11672180 DOI: 10.1002/smtd.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Indexed: 04/19/2024]
Abstract
In the rapidly advancing semiconductor sector, thermal management of chips remains a pivotal concern. Inherent heat generation during their operation can lead to a range of issues such as potential thermal runaway, diminished lifespan, and current leakage. To mitigate these challenges, the study introduces a superhygroscopic hydrogel embedded with metal ions. Capitalizing on intrinsic coordination chemistry, the metallic ions in the hydrogel form robust coordination structures with non-metallic nitrogen and oxygen through empty electron orbitals and lone electron pairs. This unique structure serves as an active site for water adsorption, beginning with a primary layer of chemisorbed water molecules and subsequently facilitating multi-layer physisorption via Van der Waals forces. Remarkably, the cobalt-integrated hydrogel demonstrates the capability to harvest over 1 and 5 g g-1 atmospheric water at 60% RH and 95% RH, respectively. Furthermore, the hydrogel efficiently releases the entirety of its absorbed water at a modest 40°C, enabling its recyclability. Owing to its significant water absorption capacity and minimal dehydration temperature, the hydrogel can reduce chip temperatures by 5°C during the dehydration process, offering a sustainable solution to thermal management in electronics.
Collapse
Affiliation(s)
- Mufeng Xi
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Xiaohu Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Hong Liu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Bolin Xu
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| | - Yongliang Zheng
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Yujie Du
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic EngineeringChongqing UniversityChongqing400044P. R. China
| | - Sai Kishore Ravi
- School of Energy and EnvironmentCity University of Hong KongTat Chee AvenueKowloonHong Kong SARHong Kong
| |
Collapse
|
2
|
Ge C, Xu D, Feng X, Yang X, Song Z, Song Y, Chen J, Liu Y, Gao C, Du Y, Sun Z, Xu W, Fang J. Recent Advances in Fibrous Materials for Hydroelectricity Generation. NANO-MICRO LETTERS 2024; 17:29. [PMID: 39347862 PMCID: PMC11444048 DOI: 10.1007/s40820-024-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.
Collapse
Affiliation(s)
- Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuhang Song
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jingyu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
3
|
Feng X, Ge C, Du H, Yang X, Fang J. Three-Dimensional Double-Layer Multi-Stage Thermal Management Fabric for Solar Desalination. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4419. [PMID: 39274808 PMCID: PMC11396556 DOI: 10.3390/ma17174419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Water scarcity is a serious threat to the survival and development of mankind. Interfacial solar steam generation (ISSG) can alleviate the global freshwater shortage by converting sustainable solar power into thermal energy for desalination. ISSG possesses many advantages such as high photothermal efficiency, robust durability, and environmental friendliness. However, conventional evaporators suffered from huge heat losses in the evaporation process due to the lack of efficient thermal management. Herein, hydrophilic Tencel yarn is applied to fabricate a three-dimensional double-layer fabric evaporator (DLE) with efficient multi-stage thermal management. DLE enables multiple solar absorptions, promotes cold evaporation, and optimizes thermal management. The airflow was utilized after structure engineering for enhanced energy evaporation efficiency. The evaporation rate can reach 2.86 kg·m-2·h-1 under 1 sun (1 kW·m-2), and 6.26 kg·m-2·h-1 at a wind speed of 3 m·s-1. After a long duration of outdoor operation, the average daily evaporation rate remains stable at over 8.9 kg·m-2, and the removal rate of metal ions in seawater reaches 99%. Overall, DLE with efficient and durable three-dimensional multi-stage thermal management exhibits excellent practicality for solar desalination.
Collapse
Affiliation(s)
- Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Heng Du
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Liu H, Cui P, Zhang J, Wang J, Ge Y, Zhou Z, Meng Y, Huang Z, Yang K, Du Z, Cheng G. Harnessing Natural Evaporation for Electricity Generation using MOF-Based Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400961. [PMID: 38534173 DOI: 10.1002/smll.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Functionalized nanochannels can convert environmental thermal energy into electrical energy by driving water evaporation. This process involves the interaction between the solid-liquid interface and the natural water evaporation. The evaporation-driven water potential effect is a novel green environmental energy capture technology that has a wide range of applications and does not depend on geographical location or environmental conditions, it can generate power as long as there is water, light, and heat. However, suitable materials and structures are needed to harness this natural process for power generation. MOF materials are an emerging field for water evaporation power generation, but there are still many challenges to overcome. This work uses MOF-801, which has high porosity, charged surface, and hydrophilicity, to enhance the output performance of evaporation-driven power generation. It can produce an open circuit voltage of ≈2.2 V and a short circuit current of ≈1.9 µA. This work has a simple structure, easy preparation, low-cost and readily available materials, and good stability. It can operate stably in natural environments with high practical value.
Collapse
Affiliation(s)
- Huimin Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Peng Cui
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ying Ge
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zunkang Zhou
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Yao Meng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zanying Huang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Yang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Gang Cheng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
5
|
Mao Z, Wang Q, Yu Z, Osman A, Yao Y, Su Y, Yang H, Lu J. High Performance Solar-Driven Power-Water Cogeneration for Practical Application: From Micro/Nano Materials to Beyond. ACS NANO 2024; 18:22648-22663. [PMID: 39143807 DOI: 10.1021/acsnano.4c06339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Solar-driven water-electricity cogeneration is a promising strategy for tackling water scarcity and power shortages. However, comprehensive reviews on performance, scalability, commercialization, and power density are lacking. This Perspective presents an overview of recent developments and insights into the challenges and future outlooks for practical applications in this area. We summarize recent advances in high-efficiency water production, focusing on rapid evaporation and condensation. Then we categorize power-water cogeneration systems by power generation mechanisms like steam, evaporation, salinity gradient, photovoltaics, and temperature gradient, providing a comprehensive summary of the performance and applicability of these systems in different scenarios. Finally, we highlight challenges in current systems, considering nanoscale mechanisms and large-scale manufacturing, while also exploring potential trends for future practical applications.
Collapse
Affiliation(s)
- Zhengyi Mao
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Qiliang Wang
- Department of Architecture and Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
- Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Zhen Yu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Amr Osman
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yao Yao
- Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Yuehong Su
- Department of Architecture and Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Hongxing Yang
- Renewable Energy Research Group (RERG), Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, People's Republic of China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Xu D, Ge C, Chen Z, Zhang Z, Zhang Q, Chen T, Gao C, Xu W, Fang J. Photo-Electro-Thermal Textiles for Scalable, High-Performance, and Salt-Resistant Solar-Driven Desalination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400623. [PMID: 38898767 PMCID: PMC11336979 DOI: 10.1002/advs.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/11/2024] [Indexed: 06/21/2024]
Abstract
Solar-driven interfacial evaporation is an emerging desalination technology that can potentially relieve the freshwater scarcity issue. To obtain high and continuous evaporation rates for all-weather, chemically engineered structural materials have been widely explored for simultaneous photothermal and electrothermal conversion. However, many previously reported fabrication processes involve poor integration and considerable energy loss. Herein, a scalable photo-electro-thermal textile is proposed to enable high efficiency, long-term salt rejection, and solar-driven desalination. Specifically, the photo-electro-thermal yarns with a core (commercial electric wire)-shell (polypyrrole-decorated Tencel) structure realize the integration of electrothermal and photothermal conversion. The wrapping eccentricity of 1.53 mm and pitch of 3 T cm-1 for the electric wire are rationally regulated to achieve a high surface temperature of over 52 °C at a 3 V DC input. As a result, exceptional and stable evaporation rates of 5.57 kg m-2 h-1 (pure water) and 4.89 kg m-2 h-1 (3.5 wt.% brine) under 1 kW m-2·radiation with a 3 V input voltage are realized. Practical application shows that the textiles can achieve high water collection of over 46 kg m-2 d-1 over the whole day of operation. The constructed photo-electro-thermal textile-based evaporator provides an effective method for commercial and scalable photo-electro-thermal conversion to achieve high-performance and salt-resistant solar-driven desalination.
Collapse
Affiliation(s)
- Duo Xu
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
- National Engineering Laboratory for Modern SilkSoochow UniversitySuzhou215123China
| | - Can Ge
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
- National Engineering Laboratory for Modern SilkSoochow UniversitySuzhou215123China
| | - Ze Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Zhixun Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Qian Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Tao Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200China
| | - Jian Fang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
- National Engineering Laboratory for Modern SilkSoochow UniversitySuzhou215123China
| |
Collapse
|
7
|
Wang JX, Qian J, Li JX, Wang X, Lei C, Li S, Li J, Zhong M, Mao Y. Enhanced interfacial boiling of impacting droplets upon vibratory surfaces. J Colloid Interface Sci 2024; 658:748-757. [PMID: 38142625 DOI: 10.1016/j.jcis.2023.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
HYPOTHESIS Despite the flourishing studies of droplet interfacial boiling, the boiling upon vibratory surfaces, which may cause vigorous liquid-vapor-solid interactions, has rarely been investigated. Enhanced boiling normally can be gained from rapid removal of vapor and disturbance of liquid-vapor interface. We hypothesize that the vibratory surfaces enhance both effects with new intriguing phenomena and thus, attain an enhanced boiling heat transfer. EXPERIMENTS We experimentally investigated the impacting fluid dynamics and coupled heat transfer patterns of multiple droplets and a single droplet impinging on still and vibratory surfaces of various materials and different wettability. FINDINGS The boiling under vibratory surfaces with increased vibration velocity amplitude and enhanced wettability can be enhanced by 80% in heat transfer coefficient and Nusselt number, which is attributed to several reasons: shortened bubble lifespan, thinner and smaller bubbles, and enhanced disturbances in liquid-vapor interfaces. The vibration also delays the Leidenfrost point when the droplet impacts a descending surface, which shows that the droplet impact moment (vibration phase angle) is particularly crucial. The descending surface releases the generated vapor actively and facilitates liquid-solid contact, thereby delaying the Leidenfrost. From fundamentals to application, this article strengthens our understanding of vibrated interfacial boiling in scenarios closer to multiple natural processes and practical industries.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Hebei 054000, PR China; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China; Taizhou Wavexploration Energy Ltd., Taizhou, 225513, PR China
| | - Jian Qian
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jia-Xin Li
- China Academy of Launch Vehicle Technology, Beijing 100076, PR China
| | - Xiong Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, PR China
| | - Chaojie Lei
- Beijing Sino-Spark Technology Co., Ltd., Beijing 100191, PR China
| | - Shengquan Li
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, PR China.
| | - Yufeng Mao
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, PR China.
| |
Collapse
|