1
|
Wang Y, Tang C, Wang K, Zhang X, Zhang L, Xiao X, Lin H, Xiong L. The role of ferroptosis in breast cancer: Tumor progression, immune microenvironment interactions and therapeutic interventions. Eur J Pharmacol 2025; 996:177561. [PMID: 40154567 DOI: 10.1016/j.ejphar.2025.177561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Ferroptosis represents a distinctive and distinct form of regulated cellular death, which is driven by the accumulation of lipid peroxidation. It is distinguished by altered redox lipid metabolism and is linked to a spectrum of cellular activities, including cancer. In breast cancer (BC), with triple negative breast cancer (TNBC) being an iron-and lipid-rich tumor, inducing ferroptosis was thought to be a novel approach to killing breast tumor cells. However, in the recent past, a novel conceptual framework has emerged which posits that in addition to the promotion of tumor cell death, ferritin deposition has a potent immunosuppressive effect on the tumor immune microenvironment (TIME) via the influence on both innate and adaptive immune responses. TIME of BC includes various cell populations from both the innate and adaptive immune systems. In this review, the internal association between iron homeostasis and the progression of ferroptosis, along with the common inducers and protectors of ferroptosis in BC, are discussed in detail. Furthermore, a comprehensive analysis is conducted on the dual role of ferroptosis in immune cells and proto-oncogenic functions, along with an evaluation of the potential applications of immunogenic cell death-targeted immunotherapy in TIME of BC. It is anticipated that our review will inform future research endeavors that seek to integrate ferroptosis and immunotherapy in the management of BC.
Collapse
Affiliation(s)
- Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Chuanyun Tang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaoan Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lifang Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinghua Xiao
- Department of Pathology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang, 330066, China
| | - Hui Lin
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhang Z, Yang J, Zhou Q, Zhong S, Liu J, Zhang X, Chang X, Wang H. The cGAS-STING-mediated ROS and ferroptosis are involved in manganese neurotoxicity. J Environ Sci (China) 2025; 152:71-86. [PMID: 39617588 DOI: 10.1016/j.jes.2024.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024]
Abstract
Manganese (Mn) has been characterized as an environmental pollutant. Excessive releases of Mn due to human activities have increased Mn levels in the environment over the years, posing a threat to human health and the environment. Long-term exposure to high concentrations of Mn can induce neurotoxicity. Therefore, toxicological studies on Mn are of paramount importance. Mn induces oxidative stress through affecting the level of reactive oxygen species (ROS), and the overabundance of ROS further triggers ferroptosis. Additionally, Mn2+ was found to be a novel activator of the cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway in the innate immune system. Thus, we speculate that Mn exposure may promote ROS production by activating the cGAS-STING pathway, which further induces oxidative stress and ferroptosis, and ultimately triggers Mn neurotoxicity. This review discusses the mechanism between Mn-induced oxidative stress and ferroptosis via activation of the cGAS-STING pathway, which may offer a prospective direction for future in-depth studies on the mechanism of Mn neurotoxicity.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Li C, Yang C, Jiang T, Song Z, Cheng D, Li J, Han Y, Su T. A hypoxia-activated and tumor microenvironment-remodeling nanoplatform for augmenting sonodynamic-chemodynamic-chemotherapy of breast cancer. Biomater Sci 2025; 13:2983-2993. [PMID: 40302461 DOI: 10.1039/d5bm00060b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The tumor microenvironment (TME) offers a promising approach to enhancing cancer therapy by altering the conditions that support tumor growth and immune evasion. However, tumors are highly heterogeneous, and the TME can vary greatly even within different regions of the same tumor. Moreover, tumors can have evolving resistance mechanisms that limit the effectiveness of therapies. In this paper, we have designed a multifunctional nanoparticle named Lip-Ce6-MnO2-TPZ, making sonodynamic therapy (SDT), chemodynamic therapy (CDT), and hypoxia-activated prodrugs work synergistically to maximize cancer treatment efficacy. The innovative Lip-Ce6-MnO2-TPZ nanoparticle was constructed by loading Ce6, MnO2, and hypoxia responsive drug tirapazamine (TPZ) together into a cytotoxic reactive oxygen species (ROS) responsive nanocarrier. Upon ultrasound (US) irradiation, ROS generated by Ce6 could not only induce cell apoptosis but also accelerate the disassembly of the nanoparticle for enhancing the release of TPZ and MnO2. As a result, SDT consumed oxygen leading to the aggravation of the hypoxic condition in the tumor site for TPZ activation and DNA damage in tumor cells. Meanwhile, the MnO2 was reduced to Mn2+ by GSH and caused antioxidant depletion. Mn2+ triggered CDT through a Fenton-like reaction by converting H2O2 to highly toxic •OH. Overall, the Lip-Ce6-MnO2-TPZ platform could induce the generation of excess ROS combined with antioxidant depletion, resulting in oxidative stress and aberrant redox homeostasis of the TME. This strategy has brought forward the idea of inducing cancer cell death by synergistically working SDT, CDT, and hypoxia-activated prodrugs to maximize the therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Chengxi Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Can Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical and pharmaceutical College, Chongqing 400060, China
| | - Tiantian Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zheming Song
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Danling Cheng
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yong Han
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Ting Su
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Khan M, Ullah R, Shah SM, Farooq U, Li J. Manganese-Based Nanotherapeutics for Targeted Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:3571-3600. [PMID: 40293195 DOI: 10.1021/acsabm.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Breast cancer (BC) is one of the most common cancers among women and is associated with high mortality. Traditional modalities, including surgery, radiotherapy, and chemotherapy, have achieved certain advancements but continue to combat challenges including harm to healthy tissues, resistance to treatment, and adverse drug reactions. The rapid advancements in nanotechnology recently facilitated the exploration of innovative strategies for breast cancer therapy. Manganese-based nanotherapeutics have attracted great attention because of their unique characteristics such as tunable structures/morphologies, versatility, magnetic/optical properties, strong catalytic activities, excellent biodegradability, and biocompatibility. In this review, we highlighted different types of Mn-based nanotherapeutics to modulate TME, including metal-immunotherapy, alleviating tumor hypoxia, and increasing reactive oxygen species production, and we emphasized its role in magnetic resonance imaging (MRI)-guided therapy, photoacoustic imaging, and theranostic-based therapy along with a therapeutic carrier, all of which were discussed in the context of breast cancer. Hopefully, the present review will provide insights into the current landscape and future directions of multifunctional applications of Mn-based nanotherapeutics in the field of breast cancer treatment.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Syed Mubassir Shah
- Department of Biotechnology, Abdul Wali Khan University, KPK, Mardan 23200, Pakistan
| | - Umar Farooq
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-tech Zone, Chongqing 401329, China
| |
Collapse
|
5
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Yang Y, Fang Y, Du X, Ying Z, Lu X, Zhou J. Application of nanoparticles with activating STING pathway function in tumor synergistic therapy. Int Immunopharmacol 2025; 148:114013. [PMID: 39823790 DOI: 10.1016/j.intimp.2025.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Although immunotherapy is currently one of the most promising methods for cancer treatment, its clinical application is limited due to issues such as excessive autoimmune responses and lack of specificity. Therefore, there is a need to improve immunotherapy by integrating emerging medical technologies with traditional treatments. The activation of the cGAS-STING pathway plays a crucial role in innate immunity and antiviral defense, making it highly promising for immunotherapy and attracting significant attention. In recent years, research on nanomaterials and immunotherapy has achieved groundbreaking progress in the medical field. Due to their unique size, shape, stiffness, surface effects, and quantum size effects, nanomaterials can either carry STING activators or directly activate the STING pathway, offering new opportunities for tumor-specific immunotherapy. These unique advantages of nanomaterials have opened up broader prospects for nanoparticle-based therapies targeting the STING pathway. This paper summarizes the current research on utilizing nanomaterials to activate the STING pathway, detailing the characteristics, classifications, and different approaches for targeting tumor cells. Additionally, it focuses on the latest advancements in combined nanotherapies based on cGAS-STING pathway activation, including the integration of nanomaterial-mediated STING pathway activation with immunotherapy, radiotherapy, chemotherapy, targeted therapy, and photodynamic therapy. This provides new ideas for nanoparticle-based combination therapies involving the STING pathway.
Collapse
Affiliation(s)
- Yi Yang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Yaning Fang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xinyu Du
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Zheye Ying
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Xiwen Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| | - Jing Zhou
- Department of Chemoradiotherapy, Ningbo NO.2 Hospital, Ningbo, Zhejiang, 315000, China.
| |
Collapse
|
7
|
Chen W, Huang D, Wu R, Wen Y, Zhong Y, Guo J, Liu A, Lin L. A multi-functional integrated nanoplatform based on a tumor microenvironment-responsive PtAu/MnO 2 cascade nanoreactor with multi-enzymatic activities for multimodal synergistic tumor therapy. J Colloid Interface Sci 2025; 679:957-974. [PMID: 39486234 DOI: 10.1016/j.jcis.2024.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The utilization or improvement of tumor microenvironment (TME) has become a breakthrough in emerging oncology therapies. To address the limited therapeutic efficacy of single modality, a multi-functional integrated nanoplatform based on a TME-responsive PtAu/MnO2 cascade nanoreactor with multi-enzymatic activities was developed for multimodal synergistic tumor therapy. Benefiting from the slightly acidic environment and high-level glutathione (GSH) in TME, PtAu/MnO2 cascade nanoreactor consumed GSH, followed by the reductive generation of manganese ion (Mn2+) and the release of PtAu nanoparticles (NPs). Then, the multimodal synergistic tumor therapy was activated as follows. First, GSH depletion inhibited the activity of glutathione peroxidase 4 and led to the accumulation of lipid peroxidation, thereby inducing tumor cell ferroptosis. Second, PtAu NPs exhibited catalase-like, glucose oxidase-like and nicotinamide adenine dinucleotide (NADH) oxidase-like activities, which generated oxygen for the cascade reaction to alleviate hypoxia and further depleted glucose, NADH and adenosine triphosphate, leading to the inhibition of tumor cell proliferation via starvation therapy. Third, the production of reactive oxygen species by the oxidase- and peroxidase-like activities of PtAu NPs and the Fenton-like reaction of Mn2+ simultaneously induced tumor cell apoptosis via chemodynamic therapy. Briefly, the in vitro and in vivo results confirmed that the multi-functional integrated nanoplatform based on a PtAu/MnO2 cascade nanoreactor with five nanozyme activities demonstrated outstanding biocompatibility and greater inhibition of tumor growth via synergistic ferroptosis/starvation therapy/apoptosis.
Collapse
Affiliation(s)
- Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Dandan Huang
- Department of Pharmacy, Fujian Children's Hospital, Fuzhou, Fujian 350000, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
8
|
Kusi D, Sun Y, Liu C. Advances in Manganese-based nanomaterials for cancer therapy via regulating Non-Ferrous ferroptosis. Int J Pharm 2025; 669:125101. [PMID: 39706379 DOI: 10.1016/j.ijpharm.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process. Mn-based nanomaterials have shown significant promise in cancer treatment by enhancing ROS production, depleting antioxidant defenses, and inducing ferroptosis. Additionally, these materials offer advantages in tumor imaging, immunotherapy, and catalyzing the Fenton-like reactions essential for ferroptosis. This review delves into the mechanisms of Mn-induced ferroptosis, focusing on recent advancements in Mn-based nanomaterials and their applications in chemodynamic therapy and immunotherapy. By leveraging non-ferrous ion-mediated ferroptosis, these approaches provide a novel avenue for cancer treatment. Furthermore, this review explores the potential role of Mn-based nanomaterials in the lipid metabolism pathways involved in ferroptosis and highlights the advantages of Mn ions over other metals in promoting ferroptosis. These insights offer new perspectives for the development of tumor therapies centered on Mn-based nanomaterials.
Collapse
Affiliation(s)
- Dipa Kusi
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, Jiaxing 314001 PR China.
| | - Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
9
|
Yuan J, Wang J, Song M, Zhao Y, Shi Y, Zhao L. Brain-targeting biomimetic disguised manganese dioxide nanoparticles via hybridization of tumor cell membrane and bacteria vesicles for synergistic chemotherapy/chemodynamic therapy of glioma. J Colloid Interface Sci 2024; 676:378-395. [PMID: 39032420 DOI: 10.1016/j.jcis.2024.07.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Glioma is a prevalent brain malignancy associated with poor prognosis. Although chemotherapy serves as the primary treatment for brain tumors, its effectiveness is hindered by the limited ability of drugs to traverse the blood-brain barrier (BBB) and the development of drug resistance linked to tumor hypoxia. Herein, we report the creation of hybrid camouflaged multifunctional nanovesicles comprising membranes of tumor C6 cells (mT) and bacterial outer membrane vesicles (OMVs) and co-loaded with manganese dioxide nanoparticles (MnO2 NPs) and doxorubicin (DOX) to synergistically enhance the chemotherapy/chemodynamic therapy (CDT) of glioma. Owing to OMV-mediated BBB penetration and mT-inherited tumor-homing properties, MnO2-DOX@mT/OMVs can penetrate the BBB and enhance the tumor cell-specific uptake of DOX via "proton sponge effect"-mediated lysosomal escape. This enhances the apoptotic effect induced by DOX and minimizing DOX-associated cardiotoxicity by facilitating the accumulation of DOX at the tumor site. Furthermore, the MnO2 NPs in MnO2-DOX@mT/OMVs can generate potent CDT by accelerating the Fenton-like reaction with DOX-generated H2O2 and achieving glutathione (GSH)-depletion-induced glutathione peroxidase 4 (GPX4) inactivation. These results showed that MnO2-DOX@mT/OMVs, designed for brain tumor targeting, significantly inhibited tumor growth and exhibited favorable biological safety. This innovative approach offers the augmentation of anticancer treatment efficacy via a potential combination of chemotherapy and CDT.
Collapse
Affiliation(s)
- Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Jingchen Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yuting Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
10
|
Li LS, Chen PW, Zhao XJ, Cheng D, Liu BB, Tang XJ, Zhu WQ, Yang X, Zhao MX. Nuclear-targeted smart nanoplatforms featuring double-shell hollow mesoporous copper sulfide coated with manganese dioxide synergistically potentiate chemotherapy and immunotherapy in hepatocellular carcinoma cells. J Colloid Interface Sci 2024; 680:202-214. [PMID: 39504750 DOI: 10.1016/j.jcis.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Smart nanoplatforms designed for nuclear-targeted delivery of chemotherapeutic agents to tumor sites are pivotal in advancing tumor treatment and immunotherapy. Herein, we introduced a novel nuclear-targeting double-shell smart nanoplatform (HMCuS/Pt/ICG@MnO2@9R-P201 (HMCPIM9P)), which synergistically enhances chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), immunotherapy and chemodynamic therapy (CDT). The core of this nanoplatform consists of double-shell multifunctional nanoparticles (HMCuS@MnO2) that enable targeted delivery of the photosensitizer Indocyanine Green (ICG) and the chemotherapeutic agent cisplatin (Pt). By effectively consuming glutathione (GSH), these nanoparticles boost the chemotherapeutic efficacy of Pt. Additionally, the manganese ion (Mn2+) present activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) pathway, bolstering adaptive immune responses against tumors and elevating the level of tumor-infiltrating CD8+ T cells. The incorporation of the hepatoma-targeting peptide (9R-P201 peptide) allows the system to exhibit FOXM1 receptor-mediated nuclear targeting properties specifically in hepatocellular carcinoma (HCC). Notably, when combined with near-infrared (NIR) light, HMCPIM9P demonstrated a remarkable tumor inhibition rate of 95.6 %, fostered a robust immune response, and significantly inhibited tumor growth and recurrence. Overall, the smart nanoplatform boasts active nuclear targeting capabilities, enabling the enrichment of chemotherapeutic agents at tumor sites, and holds great potential for synergistic applications in enhancing chemotherapy and immunotherapy for HCC.
Collapse
Affiliation(s)
- Lin-Song Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Peng-Wei Chen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Xue-Jie Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Dong Cheng
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Bang-Bang Liu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Xian-Jiao Tang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Wen-Qi Zhu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Xiaojing Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China
| | - Mei-Xia Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475004, China; The Zhongzhou Laboratory for Integrative Biology, Henan University, Kaifeng, China.
| |
Collapse
|
11
|
Huang H, Du L, Su R, Li Z, Shao Y, Yuan Y, Wang C, Lu C, He Y, He H, Zhang C. Albumin-based co-loaded sonosensitizer and STING agonist nanodelivery system for enhanced sonodynamic and immune combination antitumor therapy. J Control Release 2024; 375:524-536. [PMID: 39278356 DOI: 10.1016/j.jconrel.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
STING agonists can activate natural and adaptive immune responses, and are expected to become a new type of immunotherapy drug for tumor therapy. However, how to target deliver STING agonists to tumor tissues is a key factor affecting the efficacy of tumor treatment. Sonodynamic therapy (SDT) has become a research hotspot in the field of cancer treatment due to its non-invasive, spatiotemporally controllable, and high tissue penetration capabilities. Therefore, how to choose the appropriate drug delivery strategy, build a suitable drug delivery system to co-deliver photosensitizers and STING agonists, is a challenge faced in the tumor treatment. In this study, we developed an albumin-based nanodelivery system named FA-ICG&MnOx@HSA that co-loaded the sonosensitizers indocyanine green (ICG) and manganese oxide (MnOx). This approach achieved folate receptor-targeting mediated tumor delivery and tumor microenvironment (TME)-responsive release facilitated by high levels of glutathione (GSH) and hydrogen peroxide (H2O2), which catalyze oxygen generation to potentiate SDT efficacy in killing tumors and inducing immunogenic cell death (ICD). Simultaneously, the released Mn2+ acted as a STING agonist promoting dendritic cell maturation, IFN-β production, and proliferation of T cells. Ultimately, this albumin based co-loaded sonosensitizer and STING agonist demonstrated promising potential for advancing tumor treatment.
Collapse
Affiliation(s)
- Huaping Huang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lihua Du
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhuoyuan Li
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yu Shao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yeling Yuan
- Department of Pediatrics, Division of Hematology/Oncology, Pediatric Hematology Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chen Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Changzheng Lu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Haozhe He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
12
|
Wang Y, Wang Q, Zhong Q, Xu Y, Zheng C, Li M, Tao Y, Ju E. Immunomodulatory microneedle patch for enhanced Ferroptosis and immunogenic cell death in postoperative tumor therapy. J Control Release 2024; 376:766-776. [PMID: 39437964 DOI: 10.1016/j.jconrel.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Microneedle technologies have emerged as a promising transdermal drug delivery platform for postoperative tumor therapy. Despite their potential, enhancing intracellular drug delivery to tumor cells and boosting the therapeutic efficiency of microneedles pose significant challenges. Herein, we develop a nanomedicine-loaded microneedle to enhance the induction of ferroptosis and immunogenic cell death for postoperative tumor therapy. This advancement is achieved by pre-formulating small molecule drugs with transition metal and protein templates into nanomedicine. Upon insertion into the tumors, the microneedle rapidly dissolves, facilitating the release and subsequent cellular uptake of the nanomedicine by tumor cells. Notably, the nanomedicine can release Mn ions and ferroptosis-inducer sulfasalazine (SAS) under acidic conditions. Furthermore, the released Mn ions can produce reactive oxygen species, which decrease the levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4) with increased lipid peroxidation and enhanced induction of ferroptosis. Besides, the treatment stimulates immunogenic cell death through the cell surface exposure of calreticulin (CRT) and release of high-mobility group box 1 (HMGB1), which further stimulates dendric cell maturation, T cell infiltration, and macrophage polarization towards the M1 phenotype. Consequently, this strategy significantly inhibits postoperative tumor regrowth and extends overall survival. Our study indicates the potential of the combination of nanomedicine and microneedle to improve postoperative therapeutic efficiency.
Collapse
Affiliation(s)
- Yuqin Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Quanmin Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024; 22:587. [PMID: 39342211 PMCID: PMC11438196 DOI: 10.1186/s12951-024-02859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Spatiotemporally controlled cargo release is a key advantage of nanocarriers in anti-tumor therapy. Various external or internal stimuli-responsive nanomedicines have been reported for their ability to increase drug levels at the diseased site and enhance therapeutic efficacy through a triggered release mechanism. Redox-manipulating nanocarriers, by exploiting the redox imbalances in tumor tissues, can achieve precise drug release, enhancing therapeutic efficacy while minimizing damage to healthy cells. As a typical redox-sensitive bond, the disulfide bond is considered a promising tool for designing tumor-specific, stimulus-responsive drug delivery systems (DDS). The intracellular redox imbalance caused by tumor microenvironment (TME) regulation has emerged as an appealing therapeutic target for cancer treatment. Sustained glutathione (GSH) depletion in the TME by redox-manipulating nanocarriers can exacerbate oxidative stress through the exchange of disulfide-thiol bonds, thereby enhancing the efficacy of ROS-based cancer therapy. Intriguingly, GSH depletion is simultaneously associated with glutathione peroxidase 4 (GPX4) inhibition and dihydrolipoamide S-acetyltransferase (DLAT) oligomerization, triggering mechanisms such as ferroptosis and cuproptosis, which increase the sensitivity of tumor cells. Hence, in this review, we present a comprehensive summary of the advances in disulfide based redox-manipulating nanocarriers for anticancer drug delivery and provide an overview of some representative achievements for combinational therapy and theragnostic. The high concentration of GSH in the TME enables the engineering of redox-responsive nanocarriers for GSH-triggered on-demand drug delivery, which relies on the thiol-disulfide exchange reaction between GSH and disulfide-containing vehicles. Conversely, redox-manipulating nanocarriers can deplete GSH, thereby enhancing the efficacy of ROS-based treatment nanoplatforms. In brief, we summarize the up-to-date developments of the redox-manipulating nanocarriers for cancer therapy based on DDS and provide viewpoints for the establishment of more stringent anti-tumor nanoplatform.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China.
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Xinlei Lu
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
14
|
Cao S, Wei Y, Yue Y, Wang D, Yang J, Xiong A, Zeng H. Mapping the evolution and research landscape of ferroptosis-targeted nanomedicine: insights from a scientometric analysis. Front Pharmacol 2024; 15:1477938. [PMID: 39386034 PMCID: PMC11461269 DOI: 10.3389/fphar.2024.1477938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Notable progress has been made in "ferroptosis-based nano drug delivery systems (NDDSs)" over the past 11 years. Despite the ongoing absence of a comprehensive scientometric overview and up-to-date scientific mapping research, especially regarding the evolution, critical research pathways, current research landscape, central investigative themes, and future directions. Methods Data ranging from 1 January 2012, to 30 November 2023, were obtained from the Web of Science database. A variety of advanced analytical tools were employed for detailed scientometric and visual analyses. Results The results show that China significantly led the field, contributing 82.09% of the total publications, thereby largely shaping the research domain. Chen Yu emerged as the most productive author in this field. Notably, the journal ACS Nano had the greatest number of relevant publications. The study identified liver neoplasms, pancreatic neoplasms, gliomas, neoplasm metastases, and melanomas as the top five crucial disorders in this research area. Conclusion This research provides a comprehensive scientometric assessment, enhancing our understanding of NDDSs focused on ferroptosis. Consequently, it enables rapid access to essential information and facilitates the extraction of novel ideas in the field of ferroptotic nanomedicine for both experienced and emerging researchers.
Collapse
Affiliation(s)
- Siyang Cao
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Yaohang Yue
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Orthopedics, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Fan W, Luo QY, Lu X, Xie Q, Danzeng Q, Zhang Y, Jin S, Cheng WX, Liu C. Carbon Dot Nanozyme Ameliorating Ischemia-Reperfusion-Induced Muscle Injury by Antioxidation and Downregulating iNOS/COX-2 Pathway. ACS OMEGA 2024; 9:28666-28675. [PMID: 38973902 PMCID: PMC11223233 DOI: 10.1021/acsomega.4c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Skeletal muscle ischemia-reperfusion (IR) injury is a prevalent type of muscle injury caused by events, such as trauma, arterial embolism, and primary thrombosis. The development of an IR injury is associated with oxidative stress and an excessive inflammatory response. Nanozymes, which have exceptional free radical scavenging activities, have gained significant attention for treating oxidative stress. This study demonstrates that carbon dot (C-dot) nanozymes possess superoxide dismutase (SOD)-like activity and can act as free radical scavengers. The carbon dot nanozymes are presented to mitigate inflammation by downregulating the iNOS/COX-2 pathway and scavenging reactive oxygen-nitrogen species to reduce oxidative stress, thereby suppressing inflammation. In the IR injury of skeletal muscle mice, we demonstrate that C-dots can effectively reduce inflammatory cytokines and tissue edema in skeletal muscle following IR injury in the limb. These findings suggest that C-dots have potential as a therapeutic approach for IR injury of skeletal muscle with negligible systemic toxicity. This offers a promising strategy for clinical intervention.
Collapse
Affiliation(s)
- Wenbin Fan
- The
Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, PR China
- Department
of Thoracic Surgery, Huazhong University
of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Qing-Ying Luo
- School
of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, PR China
| | - Xun Lu
- Southern
medical university The First Clinical Medical School (Nanfang Hospital), Guangzhou 510515, PR China
| | - Qing Xie
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, Innovative
Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, PR China
| | - Qunzeng Danzeng
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, Innovative
Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, PR China
| | - Yiqian Zhang
- The
Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, PR China
| | - Song Jin
- The
Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, PR China
| | - Wen-Xiang Cheng
- Centre for
Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Cui Liu
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, Innovative
Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
16
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
17
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
18
|
Huang M, Teng Q, Cao F, Huang J, Pang J. Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomater Sci 2024; 12:1617-1629. [PMID: 38379396 DOI: 10.1039/d3bm01894f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Incidence and mortality of prostate cancer (PCa) rank in the top five among male tumors. However, single treatment modalities are often restricted due to biochemical recurrence and drug resistance, necessitating the development of new approaches for the combination treatment of castration-resistant and neuroendocrine PCa. Ferroptosis is characterized by the accumulation of iron-overload-mediated lipid peroxidation and has shown promising outcomes in anticancer treatment, prompting us to present a review reporting the application of ferroptosis in the treatment of PCa. First, the process and mechanism of ferroptosis are briefly reviewed. Second, research advances combining ferroptosis-inducing agents and clinical treatment regimens, which exhibit a "two-pronged approach" effect, are further summarized. Finally, the recent progress on ferroptosis-inducing nanomaterials for combination anticancer therapy is presented. This review is expected to provide novel insights into ferroptosis-based combination treatment in drug-resistant PCa.
Collapse
Affiliation(s)
- Mengjun Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Qiliang Teng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Fei Cao
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jinsheng Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
19
|
Fan L, Du P, Li Y, Chen X, Liu F, Liu Y, Petrov AM, Li X, Wang Z, Zhao Y. Targeted Liposomes Sensitize Plastic Melanoma to Ferroptosis via Senescence Induction and Coenzyme Depletion. ACS NANO 2024; 18:7011-7023. [PMID: 38390865 DOI: 10.1021/acsnano.3c10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ferroptotic cancer therapy has been extensively investigated since the genesis of the ferroptosis concept. However, the therapeutic efficacy of ferroptosis induction in heterogeneous and plastic melanoma has been compromised, because the melanocytic and transitory cell subpopulation is resistant to iron-dependent oxidative stress. Here, we report a phenotype-altering liposomal nanomedicine to enable the ferroptosis-resistant subtypes of melanoma cells vulnerable to lipid peroxidation via senescence induction. The strategy involves the ratiometric coencapsulation of a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor (palbociclib) and a ferroptosis inducer (auranofin) within cRGD peptide-modified targeted liposomes. The two drugs showed a synergistic anticancer effect in the model B16F10 melanoma cells, as evidenced by the combination index analysis (<1). The liposomes could efficiently deliver both drugs into B16F10 cells in a targeted manner. Afterward, the liposomes potently induced the intracellular redox imbalance and lipid peroxidation. Palbociclib significantly provoked cell cycle arrest at the G0/G1 phase, which sensitized auranofin-caused ferroptosis through senescence induction. Meanwhile, palbociclib depleted intracellular glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), further boosting ferroptosis. The proof-of-concept was also demonstrated in the B16F10 tumor-bearing mice model. The current work offers a promising ferroptosis-targeting strategy for effectively treating heterogeneous melanoma by manipulating the cellular plasticity.
Collapse
Affiliation(s)
- Lanlan Fan
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Panyu Du
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Xuefei Chen
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Fang Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yuning Liu
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova Street, Kazan, RT 420012, Russia
| | - Xin Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Sun S, He Y, Xu J, Leng S, Liu Y, Wan H, Yan L, Xu Y. Enhancing cell pyroptosis with biomimetic nanoparticles for melanoma chemo-immunotherapy. J Control Release 2024; 367:470-485. [PMID: 38290565 DOI: 10.1016/j.jconrel.2024.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Despite the fact that immunotherapy has significantly improved the prognosis of melanoma patients, the non-response rate of monoimmunotherapy is considerably high due to insufficient tumor immunogenicity. Therefore, it is necessary to develop alternative methods of combination therapy with enhanced antitumor efficiency and less systemic toxicity. In this study, we reported a cancer cell membrane-coated zeolitic imidazole framework-8 (ZIF-8) encapsulating pyroptosis-inducer oxaliplatin (OXA) and immunomodulator imiquimod (R837) for chemoimmunotherapy. With the assistance of DNA methyltransferase inhibitor decitabine (DCT), upregulated Gasdermin E (GSDME) was cleaved by OXA-activated caspase-3, further inducing tumor cell pyroptosis, then localized antitumor immunity was enhanced by immune adjuvant R837, followed by triggering systemic antitumor immune responses. These results provided a proof-of-concept for the use of cell membrane-coated biomimetic nanoparticles as a promising drug carrier of combination therapy and a potential insight for pyroptosis-based melanoma chemo-immunotherapy.
Collapse
Affiliation(s)
- Shiquan Sun
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Yong He
- R&D Department of 3D printing, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jiaqi Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Huanhuan Wan
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Leping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
21
|
Jiang X, Jiang X, Wu D, Xie W, Liu X, Zheng J. A pH-Sensitive Nanoparticle as Reactive Oxygen Species Amplifier to Regulate Tumor Microenvironment and Potentiate Tumor Radiotherapy. Int J Nanomedicine 2024; 19:709-725. [PMID: 38283195 PMCID: PMC10812755 DOI: 10.2147/ijn.s436160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Background Radiotherapy is a widely used clinical tool for tumor treatment but can cause systemic toxicity if excessive radiation is administered. Although numerous nanoparticles have been developed as radiosensitizers to reduce the required dose of X-ray irradiation, they often have limitations, such as passive reliance on radiation-induced apoptosis in tumors, and little consider the unique tumor microenvironment that contributes radiotherapy resistance. Methods In this study, we developed and characterized a novel self-assembled nanoparticle containing dysprosium ion and manganese ion (Dy/Mn-P). We systematically investigated the potential of Dy/Mn-P nanoparticles (NPs) as a reactive oxygen species (ROS) amplifier and radiosensitizer to enhance radiation therapy and modulate the tumor microenvironment at the cellular level. Additionally, we evaluated the effect of Dy/Mn-P on the stimulator of interferon genes (STING), an innate immune signaling pathway. Results Physicochemical analysis demonstrated the prepared Dy/Mn-P NPs exhibited excellent dispersibility and stability, and degraded rapidly at lower pH values. Furthermore, Dy/Mn-P was internalized by cells and exhibited selective toxicity towards tumor cells compared to normal cells. Our findings also revealed that Dy/Mn-P NPs improved the tumor microenvironment and significantly increased ROS generation under ionizing radiation, resulting in a ~70% increase in ROS levels compared to radiation therapy alone. This enhanced ROS generation inhibited ~92% of cell clone formation and greatly contributed to cytoplasmic DNA exposure. Subsequently, the activation of the STING pathway was observed, leading to the secretion of pro-inflammatory immune factors and maturation of dendritic cells (DCs). Conclusion Our study demonstrates that Dy/Mn-P NPs can potentiate tumor radiotherapy by improving the tumor microenvironment and increasing endogenous ROS levels within the tumor. Furthermore, Dy/Mn-P can amplify the activation of the STING pathway during radiotherapy, thereby triggering an anti-tumor immune response. This novel approach has the potential to expand the application of radiotherapy in tumor treatment.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Xiaohong Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, People’s Republic of China
| | - Dongjie Wu
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Wanzhu Xie
- Department of Rehabilitation, Liuzhou Worker’s Hospital, Liuzhou, 545001, People’s Republic of China
| | - Xiong Liu
- Department of Dermatology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, People’s Republic of China
| | - Jintao Zheng
- Department of Biotechnology and Food Engineering, Guangdong Technology Israel Institute of Technology, Shantou, 515063, People’s Republic of China
| |
Collapse
|
22
|
Lin Z, Zou S, Wen K. The crosstalk of CD8+ T cells and ferroptosis in cancer. Front Immunol 2024; 14:1255443. [PMID: 38288118 PMCID: PMC10822999 DOI: 10.3389/fimmu.2023.1255443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Ferroptosis is an iron-dependent, novel form of programmed cell death characterized by lipid peroxidation and glutathione depletion and is widespread in a variety of diseases. CD8+ T cells are the most important effector cells of cytotoxic T cells, capable of specifically recognizing and killing cancer cells. Traditionally, CD8+ T cells are thought to induce cancer cell death mainly through perforin and granzyme, and Fas-L/Fas binding. In recent years, CD8+ T cell-derived IFN-γ was found to promote cancer cell ferroptosis by multiple mechanisms, including upregulation of IRF1 and IRF8, and downregulation of the system XC-, while cancer cells ferroptosis was shown to enhance the anti-tumor effects of CD8+ T cell by heating the tumor immune microenvironment through the exposure and release of tumor-associated specific antigens, which results in a positive feedback pathway. Unfortunately, the intra-tumoral CD8+ T cells are more sensitive to ferroptosis than cancer cells, which limits the application of ferroptosis inducers in cancer. In addition, CD8+ T cells are susceptible to being regulated by other immune cell ferroptosis in the TME, such as tumor-associated macrophages, dendritic cells, Treg, and bone marrow-derived immunosuppressive cells. Together, these factors build a complex network of CD8+ T cells and ferroptosis in cancer. Therefore, we aim to integrate relevant studies to reveal the potential mechanisms of crosstalk between CD8+ T cells and ferroptosis, and to summarize preclinical models in cancer therapy to find new therapeutic strategies in this review.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The First People's Hospital of Zunyi, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Songzhu Zou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
23
|
Wu H, Chen S, Hu Z, Ge R, Ma L, You C, Huang Y. Exploring the prognostic potential of m6A methylation regulators in low-grade glioma: implications for tumor microenvironment modulation. Eur J Med Res 2024; 29:19. [PMID: 38173044 PMCID: PMC10763210 DOI: 10.1186/s40001-023-01621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The biological behavior of low-grade glioma (LGG) is significantly affected by N6-methyladenosine (m6A) methylation, an essential epigenetic alteration. Therefore, it is crucial to create a prognostic model for LGG by utilizing genes that regulate m6A methylation. METHODS Using TCGA and GTEx databases. We examined m6A modulator levels in LGG and normal tissues, and investigated PD-L1 and PD-1 expression, immune scores, immune cell infiltration, tumor immune microenvironment (TIME) and potential underlying mechanisms in different LGG clusters. We also performed immunohistochemistry and RT-qPCR to identify essential m6A adjustment factor. RESULTS The results showed that m6A regulatory element expression was significantly increased in LGG tissues and was significantly associated with TMIE. A substantial increase in PD-L1 and PD-1 levels in LGG tissues and high-risk cohorts was observed. PD-L1 expression was positively correlated with FTO, ZCCHC4, and HNRNPD, whereas PD-1 expression was negatively correlated with FTO, ZC3H7B, and HNRNPD. The prognostic signature created using regulators of m6A RNA methylation was shown to be strongly associated with the overall survival of LGG patients, and FTO and ZCCHC4 were confirmed as independent prognostic markers by clinical samples. Furthermore, the results revealed different TIME characteristics between the two groups of patients, indicating disrupted signaling pathways associated with LGG. CONCLUSION Our results present that the m6A regulators play vital role in regulating PD-L1/PD-1 expression and the infiltration of immune cells, thereby exerting a sizable impact on the TIME of LGG. Therefore, m6A regulators have precise predictive value in the prognosis of LGG.
Collapse
Affiliation(s)
- Honggang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Cerebrovascular Disease, The People's Hospital of Leshan, Leshan, 614000, Sichuan, China
| | - Siqi Chen
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Rong Ge
- Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315021, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
24
|
Deng X, Sun X, Hu Z, Wu Y, Zhou C, Sun J, Gao X, Huang Y. Exploring the role of m6A methylation regulators in glioblastoma multiforme and their impact on the tumor immune microenvironment. FASEB J 2023; 37:e23155. [PMID: 37606566 DOI: 10.1096/fj.202301343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
Although the role of N6-Methyladenosine (m6A) methylation factors has been established in multiple cancer types, its involvement in glioblastoma multiforme (GBM) remains limited. This study aims to explore the involvement of m6A regulators in GBM and examine their association with the tumor immune microenvironment (TIME). A comprehensive set of 24 candidate m6A RNA regulators was procured. Consensus clustering was performed based on these regulators to identify distinct GBM clusters. PD-L1 and PD-1 levels, immune cell infiltration, and immune scores were evaluated between two clusters. Prognostic signatures and correlation analysis with TIME were analyzed using Lasso and Spearman's analysis. GBM tissue was collected to verify the correlations. Eighteen m6A regulators (WTAP, YTHDF2, HNRNPC, CAPRIN1, YTHDF3, METTL14, GNL3, ZCCHC4, HNRNPD, YTHDF1, RBM15, PCIF1, RBM27, KIAA1429, MSI2, FTO, ALKBH5, and METTL3), PD-L1, and PD-1 were significantly upregulated in GBM tissue. These regulators were divided into two distinct molecular subtypes (clusters 1 and 2). Cluster 2 exhibited a significant increase in immune score, monocytes, M1 macrophages, activated mast cells, and eosinophils. HNRNPC, YWHAG, and ALKBH5 were significantly associated with TIME and positively correlated with PD-L1. Immune cell invasiveness profiles dynamically changed with copy number changes of these three m6A regulators. Finally, YWHAG and ALKBH5 were found to be independent prognostic indicators of GBM through risk analysis and were experimentally verified with clinical samples. YWHAG and ALKBH5 may be used as prognostic markers for patients with GBM. m6A methylation regulators may play an important role in regulating PD-L1/PD-1 expression and immune infiltration, thus having a significant impact on GBM TIME.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoke Sun
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| |
Collapse
|