1
|
He J, Zhou Z, Zhu W, Chen X, Zhu S, Sun J, Zuo Y, Yang M, Yu M, Yang L, Lei J, Shao W, He X, Liu H. Hesperidin Derivatives Contained Hydrogel Dressing for Photothermal Treatment of Melanoma and Postoperative Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025. [PMID: 40396277 DOI: 10.1021/acsabm.5c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Melanoma is a severe malignant skin tumor. It is crucial to effectively eliminate melanoma and promote rapid and healthy regeneration of postoperative tissue defects. Herein, hesperidin derivatives (HD) have been developed as the bioactive components of hydrogels that are capable of ablating melanoma via photothermal therapy (PTT) and promoting tissue regeneration. HD have been prepared by heating hesperidin alkaline solution followed by dialysis and lyophilization, and GelMA hydrogels encapsulating HD kill cancer cells and bacteria under near-infrared (NIR) irradiation. The in vitro test and in vivo transcriptomic analysis confirmed that the HD containing GelMA hydrogels induce the immunogenic cell death (ICD) effect of tumor cells by significantly upregulating chemokine-related, cytokine-related, and apoptosis-related genes, thereby enhancing therapeutic efficacy. In a mouse model of infected skin wounds, the HD containing hydrogels under 808 nm light irradiation effectively promoted wound repair. This was achieved through accelerated wound closure and enhanced skin regeneration, mediated by increased angiogenesis and collagen deposition. In conclusion, the HD containing hydrogels provide a new strategy for the clinical treatment of melanoma and postoperative tissue defect repair following operative resection of cancer.
Collapse
Affiliation(s)
- Jiaqian He
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, PR China
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Mengyi Yu
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Lingxiu Yang
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Jiajie Lei
- College of Biology, Hunan University, Changsha 410082, PR China
| | - Wenjia Shao
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaoli He
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
2
|
Lei H, Cui H, Xia Y, Sun F, Zhang W. Illuminating Hope for Tumors: The Progress of Light-Activated Nanomaterials in Skin Cancer. Int J Nanomedicine 2025; 20:5081-5118. [PMID: 40264819 PMCID: PMC12013650 DOI: 10.2147/ijn.s506000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Skin cancer is a common malignant tumor that poses significant global health and economic burdens. The main clinical types include malignant melanoma and non-melanoma. Complications such as post-surgical recurrence, wound formation, or disfigurement can severely impact the patient's mental well-being. Traditional treatments such as surgery, chemotherapy, radiation therapy, and immunotherapy often face limitations. These challenges not only reduce the effectiveness of treatments but also negatively impact patients' quality of life. Phototherapy, a widely used and long-standing method in dermatology, presents a promising alternative for skin cancer treatment. Light-triggered nanomaterials further enhance the potential of phototherapy by offering advantages such as improved therapeutic precision, controlled drug release, minimal invasiveness, and reduced damage to surrounding healthy tissues. This review summarizes the application of light-triggered nanomaterials in skin cancer treatment, focusing on the principles, advantages, and design strategies of photodynamic therapy (PDT), photothermal therapy (PTT), and photoacoustic therapy (PAT). In this manuscript we have an in-depth discussion on overcoming translational barriers, including strategies to enhance light penetration, mitigate toxicity, reduce production costs, and optimize delivery systems. Additionally, we discuss the challenges associated with their clinical translation, including limited light penetration in deep tissues, potential toxicity, high production costs, and the need for advanced delivery systems.
Collapse
Affiliation(s)
- Huaqing Lei
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| | - Hengqing Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Institute of Aesthetic Plastic Surgery and Medicine, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yu Xia
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Fujia Sun
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
He W, Zhang M, Zhong Y, Gao Y, Fan D, Lu X. Diverse nanoparticles deliver mRNA to enhance tumor immunotherapy. BMB Rep 2025; 58:124-132. [PMID: 40058873 PMCID: PMC11955730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 04/01/2025] Open
Abstract
Limited efficacy and severe side effects often result in suboptimal outcomes to solid tumor therapies. In contrast, the reduced side effects and potential long-term benefits of tumor immunotherapy offer promise, notwithstanding the challenges of variable patient responses and immune-related adverse events hindering its widespread application. Recent advances in mRNA technology have revolutionized cancer immunotherapy. The versatility of mRNA as a vaccine and therapeutic agent is evident in it overcoming the limitations of traditional approaches by reducing in vivo toxicity and enhancing immune response activation. The synergy between mRNA technology and immunotherapy is increasingly being utilized to improve cancer treatment efficacy. One critical aspect of maximizing the therapeutic impact of mRNA-based treatments is the selection of an effective delivery system. Due to their size properties and material characteristics, nanoparticles offer a transformative solution, enabling the targeted and efficient delivery of mRNA to tumor tissues or immune cells. This precision delivery mechanism significantly enhances the effectiveness of immunotherapy, and represents a significant advance in cancer treatment. This review aims to explore how mRNA delivery via nanoparticles enhances tumor immunotherapy. Examination of its applications and challenges provides insights and strategic perspectives to advance this innovative therapeutic approach. [BMB Reports 2025; 58(3): 124-132].
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an 710032, China
| | - Yuexia Zhong
- Outpatient Department of the Second Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Dong Fan
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xiyan Lu
- Outpatient Department of the Second Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
5
|
Liu Z, Liu S, Liu B, Meng Q, Yuan M, Ma X, Wang J, Wang M, Li K, Ma P, Lin J. Facile Synthesis of Fe-Based Metal-Quinone Networks for Mutually Enhanced Mild Photothermal Therapy and Ferroptosis. Angew Chem Int Ed Engl 2025; 64:e202414879. [PMID: 39325096 DOI: 10.1002/anie.202414879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Mild photothermal therapy (MPTT) has emerged as a promising therapeutic modality for attenuating thermal damage to the normal tissues surrounding tumors, while the heat-induced upregulation of heat shock proteins (HSPs) greatly compromises the curative efficacy of MPTT by increasing cellular thermo-tolerance. Ferroptosis has been identified to suppress the overexpression of HSPs by the accumulation of lipid peroxides and reactive oxygen species (ROS), but is greatly restricted by overexpressed glutathione (GSH) in tumor microenvironment and undesirable ROS generation efficiency. Herein, a synergistic strategy based on the mutual enhancement of MPTT and ferroptosis is proposed for cleaving HSPs to recover tumor cell sensitivity. A facile method for fabricating a series of Fe-based metal-quinone networks (MQNs) by coordinated assembly is proposed and the representative FTP MQNs possess high photothermal conversion efficiency (69.3 %). Upon 808 nm laser irradiation, FTP MQNs not only trigger effective MPTT to induce apoptosis but more significantly, potentiate Fenton reaction and marked GSH consumption to boost ferroptosis, and the reinforced ferroptosis effect in turn can alleviate the thermal resistance by declining the HSP70 defense and reducing ATP levels. This study provides a valuable rationale for constructing a large library of MQNs for achieving mutual enhancement of MPTT and ferroptosis.
Collapse
Affiliation(s)
- Zhendong Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Sainan Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiwei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang H, Gou R, Chen J, Wang Q, Li X, Chang J, Chen H, Wang X, Wan G. Catalase-positive Staphylococcus epidermidis based cryo-millineedle platform facilitates the photo-immunotherapy against colorectal cancer via hypoxia improvement. J Colloid Interface Sci 2024; 676:506-520. [PMID: 39047378 DOI: 10.1016/j.jcis.2024.07.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The synergistic anti-tumor impact of phototherapy and a cascading immune response are profoundly limited by hypoxia and a weakened immune response. Intravenous and intratumoral injection of therapeutic drugs also cause pain, rapid drug clearance and low utilization rates. Here, a novel cryo-millineedle platform for intratumoral delivery of a phototherapy system, S.epi@IR820, is developed in this work, combining the properties of Staphylococcus epidermidis (S. epidermidis) and IR820 for photo-immunotherapy of colorectal cancer. In this cryo-millineedle platform, S. epidermidis enhances the near-infrared absorption and light stability of IR820 and catalyzes the decomposition of H2O2 into O2 via an endogenous catalase to relieve tumor hypoxia, improve phototherapy and enhance immunogenic cell death (ICD). More interestingly, the native immunogenicity of S. epidermidis and ICD elicited by phototherapy achieved a potent anti-tumor immune response. To the best of our knowledge, this is the first study to utilize native S. epidermidis to relieve hypoxia and facilitate phototherapy. Both in vitro and in vivo experiments showed that the millineedle based phototherapy system can efficiently catalyse the decomposition of H2O2 into O2, facilitate phototherapeutic killing of CT26 tumor cells by S.epi@IR820 and enhance ICD, thus successfully activated the immune response and achieved the photo-immunotherapy against colorectal cancer. In conclusion, this study provides a novel strategy for enhanced anti-tumor efficiency of photo-immunotherapy, and develops an effective method for orthotopic administration of tumors.
Collapse
Affiliation(s)
- Haijiao Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruiling Gou
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiayu Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoyu Li
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaxin Chang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| | - Guoyun Wan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
8
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
9
|
Guo Z, Zhu AT, Wei X, Jiang Y, Yu Y, Noh I, Gao W, Fang RH, Zhang L. A genetically engineered neuronal membrane-based nanotoxoid elicits protective immunity against neurotoxins. Bioact Mater 2024; 38:321-330. [PMID: 38764446 PMCID: PMC11101676 DOI: 10.1016/j.bioactmat.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Given their dangerous effects on the nervous system, neurotoxins represent a significant threat to public health. Various therapeutic approaches, including chelating agents, receptor decoys, and toxin-neutralizing antibodies, have been explored. While prophylactic vaccines are desirable, it is oftentimes difficult to effectively balance their safety and efficacy given the highly dangerous nature of neurotoxins. To address this, we report here on a nanovaccine against neurotoxins that leverages the detoxifying properties of cell membrane-coated nanoparticles. A genetically modified cell line with constitutive overexpression of the α7 nicotinic acetylcholine receptor is developed as a membrane source to generate biomimetic nanoparticles that can effectively and irreversibly bind to α-bungarotoxin, a model neurotoxin. This abrogates the biological activity of the toxin, enabling the resulting nanotoxoid to be safely delivered into the body and processed by the immune system. When co-administered with an immunological adjuvant, a strong humoral response against α-bungarotoxin is generated that protects vaccinated mice against a lethal dose of the toxin. Overall, this work highlights the potential of using genetic modification strategies to develop nanotoxoid formulations against various biological threats.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T. Zhu
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoli Wei
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Zheng J, He Z, Shen L, Chen X, Chen P, Zhang B, Qin H, Xiong Z, Zhang S. Microwave-Responsive Edge-Oxidized Graphene for Imaging-Guided Neoadjuvant Thermal Immunotherapy via Promoting Immunogenic Cell Death and Redressing Hypoxia. ACS APPLIED NANO MATERIALS 2024; 7:10243-10256. [DOI: 10.1021/acsanm.4c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jieling Zheng
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Luyan Shen
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Pei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| |
Collapse
|
11
|
Yasir M, Mishra R, Tripathi AS, Maurya RK, Shahi A, Zaki MEA, Al Hussain SA, Masand VH. Theranostics: a multifaceted approach utilizing nano-biomaterials. DISCOVER NANO 2024; 19:35. [PMID: 38407670 PMCID: PMC10897124 DOI: 10.1186/s11671-024-03979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Biomaterials play a vital role in targeting therapeutics. Over the years, several biomaterials have gained wide attention in the treatment and diagnosis of diseases. Scientists are trying to make more personalized treatments for different diseases, as well as discovering novel single agents that can be used for prognosis, medication administration, and keeping track of how a treatment works. Theranostics based on nano-biomaterials have higher sensitivity and specificity for disease management than conventional techniques. This review provides a concise overview of various biomaterials, including carbon-based materials like fullerenes, graphene, carbon nanotubes (CNTs), and carbon nanofibers, and their involvement in theranostics of different diseases. In addition, the involvement of imaging techniques for theranostics applications was overviewed. Theranostics is an emerging strategy that has great potential for enhancing the accuracy and efficacy of medicinal interventions. Despite the presence of obstacles such as disease heterogeneity, toxicity, reproducibility, uniformity, upscaling production, and regulatory hurdles, the field of medical research and development has great promise due to its ability to provide patients with personalised care, facilitate early identification, and enable focused treatment.
Collapse
Affiliation(s)
- Mohammad Yasir
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India.
| | - Ratnakar Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | | | - Rahul K Maurya
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Ashutosh Shahi
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector125, Noida, 201313, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia.
| | - Sami A Al Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, India
| |
Collapse
|