1
|
Sukko N, Kalapanulak S, Saithong T. Trehalose metabolism coordinates transcriptional regulatory control and metabolic requirements to trigger the onset of cassava storage root initiation. Sci Rep 2023; 13:19973. [PMID: 37968317 PMCID: PMC10651926 DOI: 10.1038/s41598-023-47095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
Cassava storage roots (SR) are an important source of food energy and raw material for a wide range of applications. Understanding SR initiation and the associated regulation is critical to boosting tuber yield in cassava. Decades of transcriptome studies have identified key regulators relevant to SR formation, transcriptional regulation and sugar metabolism. However, there remain uncertainties over the roles of the regulators in modulating the onset of SR development owing to the limitation of the widely applied differential gene expression analysis. Here, we aimed to investigate the regulation underlying the transition from fibrous (FR) to SR based on Dynamic Network Biomarker (DNB) analysis. Gene expression analysis during cassava root initiation showed the transition period to SR happened in FR during 8 weeks after planting (FR8). Ninety-nine DNB genes associated with SR initiation and development were identified. Interestingly, the role of trehalose metabolism, especially trehalase1 (TRE1), in modulating metabolites abundance and coordinating regulatory signaling and carbon substrate availability via the connection of transcriptional regulation and sugar metabolism was highlighted. The results agree with the associated DNB characters of TRE1 reported in other transcriptome studies of cassava SR initiation and Attre1 loss of function in literature. The findings help fill the knowledge gap regarding the regulation underlying cassava SR initiation.
Collapse
Affiliation(s)
- Nattavat Sukko
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
2
|
Utsumi Y, Tanaka M, Utsumi C, Takahashi S, Matsui A, Fukushima A, Kobayashi M, Sasaki R, Oikawa A, Kusano M, Saito K, Kojima M, Sakakibara H, Sojikul P, Narangajavana J, Seki M. Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. PLANT MOLECULAR BIOLOGY 2022; 109:249-269. [PMID: 32757126 DOI: 10.1007/s11103-020-01033-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 05/23/2023]
Abstract
Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.
Collapse
Affiliation(s)
- Yoshinori Utsumi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chikako Utsumi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Fukushima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, 260-8675, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
3
|
Munguía-Rosas MA. Artificial selection optimizes clonality in chaya (Cnidoscolus aconitifolius). Sci Rep 2021; 11:21017. [PMID: 34697356 PMCID: PMC8546088 DOI: 10.1038/s41598-021-00592-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
The clonal propagation of crops offers several advantages to growers, such as skipping the juvenile phase, faster growth, and reduced mortality. However, it is not known if the wild ancestors of most clonal crops have a similar ability to reproduce clonally. Therefore, it is unclear whether clonality was an ancestral condition, or if it evolved during domestication in the majority of these crops. Here, I assessed some traits that are relevant to clonal propagation using stem cuttings from chaya (Cnidoscolus aconitifolius) and compared these traits to those of its wild ancestor. Chaya is highly relevant crop to food security in its domestication center (Yucatan Peninsula) and is now cultivated in several countries. Chaya is also an excellent model for assessing the effect of domestication on clonality because wild relatives and selection targets are known. Specifically, I compared resistance to desiccation, water and resource storage, as well as the production of new organs (shoots and leaves) by the stems of wild and domesticated plants. I also compared their performance in root development and clone survival. I found that, relative to their wild ancestors, the stem cuttings of domesticated chaya had 1.1 times greater storage capacity for water and starch. Additionally, the stems of domesticated plants produced 1.25 times more roots, 2.69 times more shoots and 1.94 more leaves, and their clones lived 1.87 times longer than their wild relatives. In conclusion, the results suggest that artificial selection has optimized water and starch storage by stems in chaya. Because these traits also confer greater fitness (i.e. increased fecundity and survival of clones), they can be considered adaptations to clonal propagation in the agroecosystems where this crop is cultivated.
Collapse
Affiliation(s)
- Miguel A Munguía-Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología Humana, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), 97310, Mérida, México.
| |
Collapse
|
4
|
Engineering Properties of Sweet Potato Starch for Industrial Applications by Biotechnological Techniques including Genome Editing. Int J Mol Sci 2021; 22:ijms22179533. [PMID: 34502441 PMCID: PMC8431112 DOI: 10.3390/ijms22179533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022] Open
Abstract
Sweet potato (Ipomoea batatas) is one of the largest food crops in the world. Due to its abundance of starch, sweet potato is a valuable ingredient in food derivatives, dietary supplements, and industrial raw materials. In addition, due to its ability to adapt to a wide range of harsh climate and soil conditions, sweet potato is a crop that copes well with the environmental stresses caused by climate change. However, due to the complexity of the sweet potato genome and the long breeding cycle, our ability to modify sweet potato starch is limited. In this review, we cover the recent development in sweet potato breeding, understanding of starch properties, and the progress in sweet potato genomics. We describe the applicational values of sweet potato starch in food, industrial products, and biofuel, in addition to the effects of starch properties in different industrial applications. We also explore the possibility of manipulating starch properties through biotechnological means, such as the CRISPR/Cas-based genome editing. The ability to target the genome with precision provides new opportunities for reducing breeding time, increasing yield, and optimizing the starch properties of sweet potatoes.
Collapse
|
5
|
Pan K, Lu C, Nie P, Hu M, Zhou X, Chen X, Wang W. Predominantly symplastic phloem unloading of photosynthates maintains efficient starch accumulation in the cassava storage roots (Manihot esculenta Crantz). BMC PLANT BIOLOGY 2021; 21:318. [PMID: 34217217 PMCID: PMC8254309 DOI: 10.1186/s12870-021-03088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/08/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) efficiently accumulates starch in its storage roots. However, how photosynthates are transported from the leaves to the phloem (especially how they are unloaded into parenchymal cells of storage roots) remains unclear. RESULTS Here, we investigated the sucrose unloading pattern and its impact on cassava storage root development using microstructural and physiological analyses, namely, carboxyfluorescein (CF) and C14 isotope tracing. The expression profiling of genes involved in symplastic and apoplastic transport was performed, which included enzyme activity, protein gel blot analysis, and transcriptome sequencing analyses. These finding showed that carbohydrates are transported mainly in the form of sucrose, and more than 54.6% was present in the stem phloem. Sucrose was predominantly unloaded symplastically from the phloem into storage roots; in addition, there was a shift from apoplastic to symplastic unloading accompanied by the onset of root swelling. Statistical data on the microstructures indicated an enrichment of plasmodesmata within sieve, companion, and parenchyma cells in the developing storage roots of a cultivar but not in a wild ancestor. Tracing tests with CF verified the existence of a symplastic channel, and [14C] Suc demonstrated that sucrose could rapidly diffuse into root parenchyma cells from phloem cells. The relatively high expression of genes encoding sucrose synthase and associated proteins appeared in the middle and late stages of storage roots but not in primary fibrous roots, or secondary fibrous roots. The inverse expression pattern of sucrose transporters, cell wall acid invertase, and soluble acid invertase in these corresponding organs supported the presence of a symplastic sucrose unloading pathway. The transcription profile of genes involved in symplastic unloading and their significantly positive correlation with the starch yield at the population level confirmed that symplastic sucrose transport is vitally important in the development of cassava storage roots. CONCLUSIONS In this study, we revealed that the cassava storage root phloem sucrose unloading pattern was predominantly a symplastic unloading pattern. This pattern is essential for efficient starch accumulation in high-yielding varieties compared with low-yielding wild ancestors.
Collapse
Affiliation(s)
- Kun Pan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
- Hainan Medical University, Haikou, 571199, China
| | - Cheng Lu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian, 271000, Shandong, China
| | - Meizhen Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Xincheng Zhou
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Xin Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China
| | - Wenquan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, China.
| |
Collapse
|
6
|
Tappiban P, Sraphet S, Srisawad N, Wu P, Han H, Smith DR, Bao J, Triwitayakorn K. Effects of cassava variety and growth location on starch fine structure and physicochemical properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Gourilekshmi SS, Jyothi AN, Sreekumar J. Physicochemical and Structural Properties of Starch from Cassava Roots Differing in Growing Duration and Ploidy Level. STARCH-STARKE 2020. [DOI: 10.1002/star.201900237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Subrahmanyan S. Gourilekshmi
- Division of Crop Utilization ICAR‐Central Root Crops Research Institute Sreekariyam Thiruvananthapuram Kerala 695017 India
| | - Alummoottil N. Jyothi
- Division of Crop Utilization ICAR‐Central Root Crops Research Institute Sreekariyam Thiruvananthapuram Kerala 695017 India
| | - Janardanan Sreekumar
- Section of Extension and Social Sciences ICAR‐Central Root Crops Research Institute Sreekariyam Thiruvananthapuram Kerala 695017 India
| |
Collapse
|
8
|
Ashogbon AO, Akintayo ET, Oladebeye AO, Oluwafemi AD, Akinsola AF, Imanah OE. Developments in the isolation, composition, and physicochemical properties of legume starches. Crit Rev Food Sci Nutr 2020; 61:2938-2959. [DOI: 10.1080/10408398.2020.1791048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Harvest time optimization leads to the production of native cassava starches with different properties. Int J Biol Macromol 2019; 132:710-721. [DOI: 10.1016/j.ijbiomac.2019.03.245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/18/2023]
|
10
|
Lv Z, Yu K, Jin S, Ke W, Fei C, Cui P, Lu G. Starch Granules Size Distribution of Sweet Potato and Their Relationship with Quality of Dried and Fried Products. STARCH-STARKE 2019. [DOI: 10.1002/star.201800175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zunfu Lv
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Kaikai Yu
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Shaoqiong Jin
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Weiyu Ke
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Cong Fei
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Peng Cui
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| | - Guoquan Lu
- College of Agriculture & Food Science and The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province; Zhejiang A & F University; Lin'an 311300 Zhejiang China
| |
Collapse
|
11
|
|
12
|
Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, Utsumi Y, Sakurai T, Seki M, Narangajavana J. Genome-wide analysis reveals phytohormone action during cassava storage root initiation. PLANT MOLECULAR BIOLOGY 2015; 88:531-43. [PMID: 26118659 DOI: 10.1007/s11103-015-0340-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Department of Biotechnology, Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr Polym 2015; 122:456-80. [DOI: 10.1016/j.carbpol.2014.10.063] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022]
|