1
|
Li Q, Wang Y, Jiang S, Xie S, Wu F, Zeng X, Li S, Dai Z, Yan Q, Wang J, Hou X, Yang F, Pi Y, Zhang M, Diao Y, Wei L. Structural characterization and anti-weightless bone loss activity of an anionic polysaccharide from Dictyophora indusiata. Int J Biol Macromol 2025; 299:140006. [PMID: 39828153 DOI: 10.1016/j.ijbiomac.2025.140006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explores the extraction and purification of polysaccharides from Dictyophora indusiata (D. indusiata) with its antioxidant and anti-weightlessness bone loss properties. An anionic polysaccharide (SADIP) with a molecular weight of 13.42 kDa was isolated and purified from D. indusiata. SADIP consists of a glucose-based sugar chain backbone. Its backbone consists of glycosidic linkages of →4)-α-D-Glcp-(1 → and →4)-β-D-Glcp-(1→, with sulfate groups attached at the O-6 position of →4)-β-D-Glcp-(1 → residues. Side chains were α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → linked at C-6 position of →4,6)-α-D-Glcp-(1 → through O-6 bonds. In vitro, SADIP scavenged up to 99.32 ± 0.24 % of 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and 76.72 ± 0.34 % of hydroxyl radicals. In vivo, SADIP reduced malondialdehyde (MDA) levels induced by weightlessness and increased low levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) caused by weightlessness. Additionally, three-point mechanical bending tests and Micro-CT analysis demonstrated that SADIP has ability to alleviate bone loss induced by weightlessness. This study provides a theoretical foundation for the rational developmation of D. indusiata resources.
Collapse
Affiliation(s)
- Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Shumin Xie
- College of Life Science, China West Normal University, Nanchong, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Sen Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, China
| | - Qiuxin Yan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinpeng Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Hou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yaning Pi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Manrui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Diao
- College of Life Science, China West Normal University, Nanchong, China; Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University, Nanchong, China.
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
2
|
Chen Q, Zhang M, Liu Y, Liu W, Peng C, Zheng L. Sulfated Polysaccharides with Anticoagulant Potential: A Review Focusing on Structure-Activity Relationship and Action Mechanism. Chem Biodivers 2024; 21:e202400152. [PMID: 38600639 DOI: 10.1002/cbdv.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Thromboembolism is the culprit of cardiovascular diseases, leading to the highest global mortality rate. Anticoagulation emerges as the primary approach for managing thrombotic conditions. Notably, sulfated polysaccharides exhibit favorable anticoagulant efficacy with reduced side effects. This review focuses on the structure-anticoagulant activity relationship of sulfated polysaccharides and the underlying action mechanisms. It is concluded that chlorosulfonicacid-pyridine method serves as the preferred technique to synthesize sulfated polysaccharides. The anticoagulant activity of sulfated polysaccharides is linked to the substitution site of sulfate groups, degree of substitution, molecular weight, main side chain structure, and glycosidic bond conformation. Moreover, sulfated polysaccharides exert anticoagulant activity via various pathways, including the inhibition of blood coagulation factors, activation of antithrombin III and heparin cofactor II, antiplatelet aggregation, and promotion of the fibrinolytic system.
Collapse
Affiliation(s)
- Qianfeng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Mengjiao Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yue Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Wei Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Cheng Peng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| |
Collapse
|
3
|
Lu MK, Chao CH, Chang TY, Cheng MC, Hsu YC, Chang CC. A branched 2-O sulfated 1,3-/1,4-galactoglucan from Antrodia cinnamomea exhibits moderate antiproliferative and anti-inflammatory activities. Int J Biol Macromol 2023; 241:124559. [PMID: 37100312 DOI: 10.1016/j.ijbiomac.2023.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
A sulfated galactoglucan (3-SS) was discovered in Antrodia cinnamomea with antiproliferative and anti-inflammatory activities. Chemical identification of 3-SS resulted in the determination of a partial repeat unit as a 2-O sulfated 1,3-/1,4-linked galactoglucan with a two-residual 1,6-O-β-Glc branch on the 3-O position of a Glc. by monosaccharide analysis and 1D and 2D NMR spectroscopy. The anti-inflammation effects of 3-SS on RAW264.7 macrophage cells, such as IL-6 inhibition, restoration of LPS-induced IκB protein degradation, and inhibited LPS-induced TGFRII protein degradation, were confirmed to occur via AKT, ERK1/2, and p-38. In addition, 3-SS impaired the proliferation of H1975 lung cancer cells through EGFR/ERK/slug signaling. This is the first finding of 2-O sulfated 1,3-/1,4-galactoglucan with 1,6-β-Glc branches with dual functions of anti-inflammatory and antiproliferative activities.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan, ROC; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Tsu-Yuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Che Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021; 12:100168. [PMID: 34877528 PMCID: PMC8633561 DOI: 10.1016/j.fochx.2021.100168] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional properties of polysaccharides depend on their structural features. IR spectroscopy is widely used in polysaccharide structural analysis. Classical applications of IR spectroscopy in polysaccharide are reviewed. IR integrating techniques can considerably expand its application scope.
Polysaccharides are important biomacromolecules with numerous beneficial functions and a wide range of industrial applications. Functions and properties of polysaccharides are closely related to their structural features. Infrared (IR) spectroscopy is a well-established technique which has been widely applied in polysaccharide structural analysis. In this paper, the principle of IR and interpretation of polysaccharide IR spectrum are briefly introduced. Classical applications of IR spectroscopy in polysaccharide structural elucidation are reviewed from qualitative and quantitative aspects. Some advanced IR techniques including integrating with mass spectrometry (MS), microscopy and computational chemistry are introduced and their applications are emphasized. These emerging techniques can considerably expand application scope of IR, thus exert a more important effect on carbohydrate characterization. Overall, this review seeks to provide a comprehensive insight to applications of IR spectroscopy in polysaccharide structural analysis and highlights the importance of advanced IR-integrating techniques.
Collapse
Affiliation(s)
- Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
5
|
Chemically sulfated arabinoxylans from Plantago ovata seed husk: Synthesis, characterization and antiviral activity. Carbohydr Polym 2021; 256:117555. [DOI: 10.1016/j.carbpol.2020.117555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
|
6
|
Bak J, Miyazaki Y, Nakano H, Matsui T. Ligand-aided 1H Nuclear Magnetic Resonance Spectroscopy for Non-destructive Estimation of Sulfate Content in Sulfated Saccharides. ANAL SCI 2020; 36:1269-1274. [PMID: 32565527 DOI: 10.2116/analsci.20p163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sulfated saccharides exhibit diverse physiological activities, but a lack of any convenient assay hinders their evaluation. Herein, an assay for the analysis of sulfated saccharides is described using 1H nuclear magnetic resonance (NMR) spectroscopy by employing ligands that can form ionic complexes with the sulfate groups. Based on the change in the chemical shift (Δδ) of the ligands by sulfated mono- to tetrasaccharide, imidazole was found to be a good ligand, showing the maximum Δδ; neutral saccharides do not show any change in the δ value. A marked and constant downfield δ value observed was changed dramatically at a molar ratio of >1:1 (imidazole:sulfated saccharides), allowing a sulfate content estimation based on the concentration of imidazole at the Δδ inflection point. By the proposed ligand-aided 1H NMR assay, the sulfate content of natural sulfated polysaccharide, fucoidan, was non-destructively estimated to be 2.1 mmol/g-fucoidan.
Collapse
Affiliation(s)
- Juneha Bak
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| | - Yoshiyuki Miyazaki
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University.,NPO Research Institute of Fucoidan
| | | | - Toshiro Matsui
- Division of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University
| |
Collapse
|
7
|
Akman F, Kazachenko AS, Vasilyeva NY, Malyar YN. Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127899] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zhang J, Wen C, Chen M, Gu J, Zhou J, Duan Y, Zhang H, Ma H. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int J Biol Macromol 2019; 134:172-179. [PMID: 31075337 DOI: 10.1016/j.ijbiomac.2019.05.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/23/2023]
Abstract
In the present study, orthogonal experiment (L9 (3)4) was used to optimize the extraction process of Sagittaria sagittifolia L. polysaccharides (SSP) with subcritical water, and the antioxidant activities of polysaccharides were also investigated. The results showed that the optimum extraction conditions were obtained when pH, extraction temperature, extraction time, and liquid to solid ratio were 7, 170 °C, 16 min and 30:1 (mL/g), respectively. In addition, DPPH/ABTS radical scavenging rate and Fe3+ reducing power of polysaccharides exhibited a certain dose-effect relationship. Furthermore, both yield and antioxidant activities of polysaccharides with subcritical water extraction (SWE) were higher than traditional hot water extraction (HWE). The above results showed that SWE was an effective technique to extract and separate polysaccharides from Sagittaria sagittifolia L., which may be potentially applied in the related polysaccharides extraction.
Collapse
Affiliation(s)
- Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinyan Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|