1
|
Zhang J, Guo R, Zhou Z, Fu Z, Akogo HY, Li Y, Zhang X, Wang N, Liu Y, Li H, Feng B, Cui H, Ma J. Neural Stem/Progenitor Cell Therapy in Patients and Animals with Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-analysis. Mol Neurobiol 2025; 62:6521-6536. [PMID: 39821843 DOI: 10.1007/s12035-024-04682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative malady that causes progressive degeneration and loss of motor neuron function in the brain and spinal cord, eventually resulting in muscular atrophy, paralysis, and death. Neural stem/progenitor cell (NSPC) transplantation can improve bodily function in animals and delay disease progression in patients with ALS. This paper summarizes and analyzes the efficacy and safety of neural stem/progenitor cell (NSPC) transplantation as a treatment for ALS, aiming to improve function and delay disease progression in patients. We present a summary of the pathogenic mechanism and causative genes associated with ALS and describe the mechanism and efficacy of NSPC treatment for ALS. We comprehensively searched for relevant English-language articles published between January 1, 2000 and October 1, 2023, across the following five medical databases: PubMed, EMBASE, OVID, Web of Science, and the Cochrane Library. We examined experimental indices of physical function in animals and patients who underwent stem cell transplantation. All statistical analyses were performed via Review Manager 5.4. The study comprised a total of 16 investigations, including 5 clinical studies and 11 animal studies and involving 66 patients and 203 animals. The meta-analysis revealed that the administration of NSPCs appeared to yield positive outcomes in clinical patients, as assessed by the ALS functional rating scale and forced vital capacity. Furthermore, improvements following cell injection were observed in the rotarod test results, the Basso-Beattie-Bresnahan Locomotor Rating Scale score, weight, and survival time. Our meta-analysis, which was grounded in randomized controlled trials, revealed that the transplantation of neural stem/progenitor cells (NSPCs), has potential effects on ALS patients, enhancing the physical function of animals and mitigating degenerative effects in individuals. These underscored the promise of NSPC therapy as a viable treatment option. We report that the transplantation of neural stem/progenitor cells (NSPCs) is promising for enhancing bodily function and slowing the progression of ALS in affected patients. In this review, we summarize the treatment of ALS with NSPCs, evaluating both its efficacy and safety. Through database searches, we identified 16 studies involving 66 patients and 203 animals and analyzed the experimental indices of physical function following stem cell transplantation. The meta-analysis results indicated a positive impact of NSPCs on the clinical conditions of patients and the behavior of animals. A meta-analysis of randomized controlled trials further supported the conclusion that NSPC transplantation has a beneficial effect on improving physical function and mitigating degeneration in ALS patients.
Collapse
Affiliation(s)
- Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Zijing Zhou
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Zewei Fu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Herman Yao Akogo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Department of Basic Sciences, Klintaps College of Health and Allied Sciences, Tema, Ghana
| | - Yan Li
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xiaohan Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Ni Wang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Yuqian Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Huixin Li
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Baofeng Feng
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province, 050017, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, Hebei Province, 050017, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
2
|
González-Sánchez M, Ramírez-Expósito MJ, Martínez-Martos JM. Pathophysiology, Clinical Heterogeneity, and Therapeutic Advances in Amyotrophic Lateral Sclerosis: A Comprehensive Review of Molecular Mechanisms, Diagnostic Challenges, and Multidisciplinary Management Strategies. Life (Basel) 2025; 15:647. [PMID: 40283201 PMCID: PMC12029092 DOI: 10.3390/life15040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons, leading to muscle atrophy, paralysis, and respiratory failure. This comprehensive review synthesizes the current knowledge on ALS pathophysiology, clinical heterogeneity, diagnostic frameworks, and evolving therapeutic strategies. Mechanistically, ALS arises from complex interactions between genetic mutations (e.g., in C9orf72, SOD1, TARDBP (TDP-43), and FUS) and dysregulated cellular pathways, including impaired RNA metabolism, protein misfolding, nucleocytoplasmic transport defects, and prion-like propagation of toxic aggregates. Phenotypic heterogeneity, manifesting as bulbar-, spinal-, or respiratory-onset variants, complicates its early diagnosis, which thus necessitates the rigorous application of the revised El Escorial criteria and emerging biomarkers such as neurofilament light chain. Clinically, ALS intersects with frontotemporal dementia (FTD) in up to 50% of the cases, driven by shared TDP-43 pathology and C9orf72 hexanucleotide expansions. Epidemiological studies have revealed a lifetime risk of 1:350, with male predominance (1.5:1) and peak onset between 50 and 70 years. Disease progression varies widely, with a median survival of 2-4 years post-diagnosis, underscoring the urgency for early intervention. Approved therapies, including riluzole (glutamate modulation), edaravone (antioxidant), and tofersen (antisense oligonucleotide), offer modest survival benefits, while dextromethorphan/quinidine alleviates the pseudobulbar affect. Non-pharmacological treatment advances, such as non-invasive ventilation (NIV), prolong survival by 13 months and improve quality of life, particularly in bulb-involved patients. Multidisciplinary care-integrating physical therapy, respiratory support, nutritional management, and cognitive assessments-is critical to addressing motor and non-motor symptoms (e.g., dysphagia, spasticity, sleep disturbances). Emerging therapies show promise in preclinical models. However, challenges persist in translating genetic insights into universally effective treatments. Ethical considerations, including euthanasia and end-of-life decision-making, further highlight the need for patient-centered communication and palliative strategies.
Collapse
Affiliation(s)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E23071 Jaén, Spain; (M.G.-S.); (M.J.R.-E.)
| |
Collapse
|
3
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
5
|
Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, Chin BY, Wong CY. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024; 13:35. [PMID: 39857620 PMCID: PMC11763168 DOI: 10.3390/biomedicines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. METHODS This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). RESULTS MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. CONCLUSIONS This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity.
Collapse
Affiliation(s)
- Lauren Frawley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Noam Tomer Taylor
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Olivia Sivills
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Ella McPhillamy
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Timothy Duy To
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Yibo Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Beek Yoke Chin
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
- Center for Cancer & Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
6
|
Martin JR, Cleary D, Abraham ME, Mendoza M, Cabrera B, Jamieson C, Marsala M, Ciacci JD. Long-term clinical and safety outcomes from a single-site phase 1 study of neural stem cell transplantation for chronic thoracic spinal cord injury. Cell Rep Med 2024; 5:101841. [PMID: 39626671 PMCID: PMC11722094 DOI: 10.1016/j.xcrm.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/07/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
We report the long-term results for a phase 1 study of neural stem cell transplantation for chronic spinal cord injury. The trial was registered on ClinicalTrials.gov as NCT01772810. The primary outcome of the trial was to test the feasibility and safety of human spinal cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury in four subjects with thoracic two to thoracic twelve spinal cord injury. Here, we report that all four subjects tolerated the stem cell implantation procedure well, and two subjects had durable electromyography-quantifiable evidence of neurological improvement as well as increased neurological motor and sensory scores at five years post-transplantation.
Collapse
Affiliation(s)
- Joel R Martin
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniel Cleary
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mickey E Abraham
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michelle Mendoza
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Betty Cabrera
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Martin Marsala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Gowrishankar S, Smith ME, Creber N, Muzaffar J, Borsetto D. Immunosuppression in stem cell clinical trials of neural and retinal cell types: A systematic review. PLoS One 2024; 19:e0304073. [PMID: 38968328 PMCID: PMC11226136 DOI: 10.1371/journal.pone.0304073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/03/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Pharmacologic immunosuppression regimes are commonly employed in stem cell clinical trials to mitigate host immune rejection and promote survival and viability of transplanted cells. Immunosuppression and cell survival has been extensively studied in retinal and spinal tissues. The applicability of stem cell therapy is rapidly expanding to other sensory organs such as the ear and hearing. As regenerative therapy is directed to new areas, a greater understanding of immunosuppression strategies and their efficacy is required to facilitate translation to organ-specific biologic microenvironments. OBJECTIVE This systematic review appraises the current literature regarding immunosuppression strategies employed in stem cell trials of retinal and neural cells. METHODS This systematic review was performed in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria included studies presenting data on neural or retinal cells as part of an in-human clinical trial that detailed the immunosuppression regime used. Exclusion criteria included non-English language studies, animal studies, review articles, case reports, editorials, and letters. The databases Medline, Embase, Scopus, Web of Science, and the Cochrane Library were searched from inception to February 2024. Risk of bias was evaluated using the ROBINS-I tool. RESULTS Eighteen articles fit the inclusion criteria. Nine articles concerned retinal cells, 5 concerned spinal cord injury, and 4 concerned amyotrophic lateral sclerosis. A multi-drug and short-term immunosuppression regime were commonly employed in the identified studies. Detected immune responses in treated patients were rare. Common immunosuppression paradigms included tacrolimus, mycophenolate mofetil and tapering doses of steroids. Local immunosuppression with steroids was employed in some studies concerning retinal diseases. DISCUSSION A short-term course of systemic immunosuppression seemed efficacious for most included studies, with some showing grafted cells viable months to years after immunosuppression had stopped. Longer-term follow-up is required to see if this remains the case. Side effects related to immunosuppression were uncommon.
Collapse
Affiliation(s)
- Shravan Gowrishankar
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| | - Matthew E. Smith
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Nathan Creber
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
- Royal Prince Alfred Hospital, Sydney, Australia
| | - Jameel Muzaffar
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| | - Daniele Borsetto
- Department of ENT, Cambridge University Hospitals, Cambridge, England, United Kingdom
| |
Collapse
|
8
|
Wei Y, Zhong S, Yang H, Wang X, Lv B, Bian Y, Pei Y, Xu C, Zhao Q, Wu Y, Luo D, Wang F, Sun H, Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem 2024; 272:116496. [PMID: 38759454 DOI: 10.1016/j.ejmech.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.
Collapse
Affiliation(s)
- Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Daying Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Bryson JB, Kourgiantaki A, Jiang D, Demosthenous A, Greensmith L. An optogenetic cell therapy to restore control of target muscles in an aggressive mouse model of amyotrophic lateral sclerosis. eLife 2024; 12:RP88250. [PMID: 38236205 PMCID: PMC10945574 DOI: 10.7554/elife.88250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.
Collapse
Affiliation(s)
- J Barney Bryson
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Kourgiantaki
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Maragakis NJ, de Carvalho M, Weiss MD. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture. Ann Clin Transl Neurol 2023; 10:1948-1971. [PMID: 37641443 PMCID: PMC10647018 DOI: 10.1002/acn3.51887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Numerous potential amyotrophic lateral sclerosis (ALS)-relevant pathways have been hypothesized and studied preclinically, with subsequent translation to clinical trial. However, few successes have been observed with only modest effects. Along with an improved but incomplete understanding of ALS as a neurodegenerative disease is the evolution of more sophisticated and diverse in vitro and in vivo preclinical modeling platforms, as well as clinical trial designs. We highlight proposed pathological pathways that have been major therapeutic targets for investigational compounds. It is likely that the failures of so many of these therapeutic compounds may not have occurred because of lack of efficacy but rather because of a lack of preclinical modeling that would help define an appropriate disease pathway, as well as a failure to establish target engagement. These challenges are compounded by shortcomings in clinical trial design, including lack of biomarkers that could predict clinical success and studies that are underpowered. Although research investments have provided abundant insights into new ALS-relevant pathways, most have not yet been developed more fully to result in clinical study. In this review, we detail some of the important, well-established pathways, the therapeutics targeting them, and the subsequent clinical design. With an understanding of some of the shortcomings in translational efforts over the last three decades of ALS investigation, we propose that scientists and clinicians may choose to revisit some of these therapeutic pathways reviewed here with an eye toward improving preclinical modeling, biomarker development, and the investment in more sophisticated clinical trial designs.
Collapse
Affiliation(s)
| | - Mamede de Carvalho
- Faculdade de MedicinaInsqatituto de Medicina Molecular João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de LisboaLisbonPortugal
| | - Michael D. Weiss
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
12
|
Duranti E, Villa C. Muscle Involvement in Amyotrophic Lateral Sclerosis: Understanding the Pathogenesis and Advancing Therapeutics. Biomolecules 2023; 13:1582. [PMID: 38002264 PMCID: PMC10669302 DOI: 10.3390/biom13111582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal condition characterized by the selective loss of motor neurons in the motor cortex, brainstem, and spinal cord. Muscle involvement, muscle atrophy, and subsequent paralysis are among the main features of this disease, which is defined as a neuromuscular disorder. ALS is a persistently progressive disease, and as motor neurons continue to degenerate, individuals with ALS experience a gradual decline in their ability to perform daily activities. Ultimately, muscle function loss may result in paralysis, presenting significant challenges in mobility, communication, and self-care. While the majority of ALS research has traditionally focused on pathogenic pathways in the central nervous system, there has been a great interest in muscle research. These studies were carried out on patients and animal models in order to better understand the molecular mechanisms involved and to develop therapies aimed at improving muscle function. This review summarizes the features of ALS and discusses the role of muscle, as well as examines recent studies in the development of treatments.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
13
|
Li B, Zhang W, Zhong S, Pan J, Wang X, Zou H, Dou X. Short-term outcome of plasma adsorption therapy in amyotrophic lateral sclerosis. J Med Biochem 2023; 42:401-406. [PMID: 37814618 PMCID: PMC10560498 DOI: 10.5937/jomb0-40631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 10/11/2023] Open
Abstract
Background To observe the short-term outcome of plasma adsorption PA therapy in amyotrophic lateral sclerosis (ALS). Methods 28 cases of als patients were recruited in this study, of which 20 were male and 8 were female with a mean age of 53.21±9.07 years and the average course of 33±23.35 months. The clinical manifestations were limb weakness (N=27), muscular atrophy (N=27), muscular tremor (N=5), dysphagia (N=12) and dysarthria (N=12). The clinical data of the patients recruited were graded by Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRSR) : <10 (N=1), 11-20 (N=4), 21-30 (N=6), 31-40 (N=12), >40 (N=5). All patients received PA therapy once a week for three successive times after examining the conditions of blood coagulation and virus infection. PA therapy was supplemented with neurotrophic therapy meanwhile. All patients' clinical manifestations and scores of ALSFRSR before treatment and one week after treatment were evaluated and compared. The levels of serum superoxide dismutase (SOD), interleukin-10 (IL-10), serum creatine kinase (CK) and lactate dehydrogenase (LDH) before and after treatment were compared. Results After PA therapy, 14 patients have improved obviously in muscle strength, 4 patients in hypermyotonia partially, 3 patients in muscular tremor, 5 patients in dysarthria, 3 patients in salivation to some extent and 2 patients in swallowing function. The score of ALSFRSR after PA treatment (31.89±10.36) was remarkably higher than that before PA treatment (30.68±10.52) (P<0.01). The levels of SOD (155.10±21.87 IU/L) and IL-10 (138.06±185.88 pg/mL) after PA treatment were significantly higher than the levels before PA treatment (143.08.3±19.16 IU/L and 46.34±75.31 pg/mL, respectively) (P<0.05). The levels of CK (168.86±113.50 IU/L) and LDH (152.07±32.65 IU/L) after PA treatment were significantly lower than the levels before PA treatment (356.68±250.30 IU/L and 181.36±33.74 IU/L respectively) (P<0.01). At the end of follow-up period (November, 2019), five patients died of respiratory failure 16-21 months after PA treatment and two patents died of respiratory infection 15-20 months after PA treatment. 7 patients were still alive. The score of ALSFRS-R of these patients who survived at the end of follow-up (13.00±13.37) were significantly lower than before PA treatment (36.71±8.56) (P<0.05) and after PA treatment (38.14±8.82) (P<0.05). Conclusions Plasma adsorption (PA) therapy has shortterm therapeutic effects on als. The effects might be attributed to the anti-oxygen free radical effect by increasing SOD level and the anti-inflammation effect by increasing IL-10 level. As the efficacy of PA therapy was obtained in a small sample size and short follow-up period, the longterm observation of PA efficacy in treating als should be further investigated.
Collapse
Affiliation(s)
- Bin Li
- Shunde Hospital of Southern Medical University, Department of Nephrology, Shunde, China
| | - Wei Zhang
- Shunde Hospital of Southern Medical University, Department of Nephrology, Shunde, China
| | - Shaoxin Zhong
- Shunde Hospital of Southern Medical University, Department of Nephrology, Shunde, China
| | - Jianyi Pan
- Shunde Hospital of Southern Medical University, Department of Nephrology, Shunde, China
| | - Xiaohong Wang
- The Third Affiliated Hospital of Southern Medical University, Department of Nephrology, Guangzhou, China
| | - Hequn Zou
- The Third Affiliated Hospital of Southern Medical University, Department of Nephrology, Guangzhou, China
| | - Xianrui Dou
- Shunde Hospital of Southern Medical University, Department of Nephrology, Shunde, China
| |
Collapse
|
14
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Huang H, Sanberg PR, Moviglia GA, Sharma A, Chen L, Chen D. Clinical results of neurorestorative cell therapies and therapeutic indications according to cellular bio-proprieties. Regen Ther 2023; 23:52-59. [PMID: 37122360 PMCID: PMC10130496 DOI: 10.1016/j.reth.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Cell therapies have been explored to treat patients with nervous diseases for over 20 years. Even though most kinds of cell therapies demonstrated neurorestorative effects in non-randomized clinical trials; the effects of the majority type cells could not be confirmed by randomized controlled trials. In this review, clinical therapeutic results of neurorestorative cell therapies according to cellular bio-proprieties or cellular functions were introduced. Currently it was demonstrated from analysis of this review that some indications of cell therapies were not appropriate, they might be reasons why their neurorestorative effects could not be proved by multicenter, randomized, double blind, placebo-controlled clinical trials. Theoretically if one kind of cell therapy has neurorestorative effects according to its cellular bio-proprieties, it should have appropriate indications. The cell therapies with special bio-properties is promising if the indication selections are appropriate, such as olfactory ensheathing cells for chronic ischemic stroke, and their neurorestorative effects can be confirmed by higher level clinical trials of evidence-based medicine.
Collapse
Affiliation(s)
- Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
- Corresponding author.
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, Morsani College of Medicine, University of South Florida, Tampa 33612, Florida, USA
| | | | - Alok Sharma
- Department of Neurosurgery, LTM Medical College, LTMG Hospital, Mumbai, India
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Di Chen
- Beijing Hongtianji Neuroscience Academy, Beijing 100143, China
| |
Collapse
|
16
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
17
|
Davaa G, Hong JY, Lee JH, Kim MS, Buitrago JO, Li YM, Lee HH, Han DW, Leong KW, Hyun JK, Kim HW. Delivery of Induced Neural Stem Cells Through Mechano-Tuned Silk-Collagen Hydrogels for the Recovery of Contused Spinal Cord in Rats. Adv Healthc Mater 2023; 12:e2201720. [PMID: 36447307 DOI: 10.1002/adhm.202201720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSC) have tremendous potential for therapeutic regeneration of diseased or traumatized neural tissues, including injured spinal cord. However, transplanted NSC suffer from low cell survival and uncontrolled differentiation, limiting in vivo efficacy. Here, this issue is tackled by delivery through silk-collagen protein hydrogels that are stiffness-matched, stress-relaxing, and shear-thinning. The mechanically-tuned hydrogels protect NSC reprogrammed from fibroblasts (iNSC) initially from injection shear-stress, and enhance long-term survival over 12 weeks. Hydrogel-iNSC treatment alleviates neural inflammation, with reduced inflammatory cells and lesions than NSC-only. The iNSC migrate from the hydrogel into surrounding tissues, secrete up-regulated neurotrophic factors, and differentiate into neural cell subtypes, forming synapses. More serotonergic axons are observed in the lesion cavity, and locomotor functions are improved in hydrogel-iNSC than in iNSC-only. This study highlights the ability of mechanically-tuned protein hydrogels to protect iNSC from the injection stress and severe inflammatory environment, allowing them to differentiate and function to recover the injured spinal cord.
Collapse
Affiliation(s)
- Ganchimeg Davaa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Young Hong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Min Soo Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jennifer O Buitrago
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Basic Sciences Department, International University of Catalonia (UIC), Barcelona, 08017, Spain
| | - Yu-Meng Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Wook Han
- Konkuk University Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, Seoul, 143701, Republic of Korea
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.,Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jung Keun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Wiregene Co., Ltd., Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.,Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
18
|
Gotkine M, Caraco Y, Lerner Y, Blotnick S, Wanounou M, Slutsky SG, Chebath J, Kuperstein G, Estrin E, Ben-Hur T, Hasson A, Molakandov K, Sonnenfeld T, Stark Y, Revel A, Revel M, Izrael M. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J Transl Med 2023; 21:122. [PMID: 36788520 PMCID: PMC9927047 DOI: 10.1186/s12967-023-03903-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Malfunction of astrocytes is implicated as one of the pathological factors of ALS. Thus, intrathecal injection of healthy astrocytes in ALS can potentially compensate for the diseased astrocytes. AstroRx® is an allogeneic cell-based product, composed of healthy and functional human astrocytes derived from embryonic stem cells. AstroRx® was shown to clear excessive glutamate, reduce oxidative stress, secrete various neuroprotective factors, and act as an immunomodulator. Intrathecal injection of AstroRx® to animal models of ALS slowed disease progression and extended survival. Here we report the result of a first-in-human clinical study evaluating intrathecal injection of AstroRx® in ALS patients. METHODS We conducted a phase I/IIa, open-label, dose-escalating clinical trial to evaluate the safety, tolerability, and therapeutic effects of intrathecal injection of AstroRx® in patients with ALS. Five patients were injected intrathecally with a single dose of 100 × 106 AstroRx® cells and 5 patients with 250 × 106 cells (low and high dose, respectively). Safety and efficacy assessments were recorded for 3 months pre-treatment (run-in period) and 12 months post-treatment (follow-up period). RESULTS A single administration of AstroRx® at either low or high doses was safe and well tolerated. No adverse events (AEs) related to AstroRx® itself were reported. Transient AEs related to the Intrathecal (IT) procedure were all mild to moderate. The study demonstrated a clinically meaningful effect that was maintained over the first 3 months after treatment, as measured by the pre-post slope change in ALSFRS-R. In the 100 × 106 AstroRx® arm, the ALSFRS-R rate of deterioration was attenuated from - 0.88/month pre-treatment to - 0.30/month in the first 3 months post-treatment (p = 0.039). In the 250 × 106 AstroRx® arm, the ALSFRS-R slope decreased from - 1.43/month to - 0.78/month (p = 0.0023). The effect was even more profound in a rapid progressor subgroup of 5 patients. No statistically significant change was measured in muscle strength using hand-held dynamometry and slow vital capacity continued to deteriorate during the study. CONCLUSIONS Overall, these findings suggest that a single IT administration of AstroRx® to ALS patients at a dose of 100 × 106 or 250 × 106 cells is safe. A signal of beneficial clinical effect was observed for the first 3 months following cell injection. These results support further investigation of repeated intrathecal administrations of AstroRx®, e.g., every 3 months. TRIAL REGISTRATION NCT03482050.
Collapse
Affiliation(s)
- Marc Gotkine
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoseph Caraco
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yossef Lerner
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Blotnick
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maor Wanounou
- Hadassah Clinical Research Center (HCRC), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Elena Estrin
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Kfir Molakandov
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Tehila Sonnenfeld
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Yafit Stark
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Ariel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Michal Izrael
- Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel.
| |
Collapse
|
19
|
Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines 2023; 11:biomedicines11020505. [PMID: 36831041 PMCID: PMC9953050 DOI: 10.3390/biomedicines11020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Stem cell-based therapies (SCT) to treat neurodegenerative disorders have promise but clinical trials have only recently begun, and results are not expected for several years. While most SCTs largely lead to a symptomatic therapeutic effect by replacing lost cell types, there may also be disease-modifying therapeutic effects. In fact, SCT may complement a multi-drug, subtype-specific therapeutic approach, consistent with the idea of precision medicine, which matches molecular therapies to biological subtypes of disease. In this narrative review, we examine published and ongoing trials in SCT in Parkinson's Disease, atypical parkinsonian disorders, Huntington's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia in humans. We discuss the benefits and pitfalls of using this treatment approach within the spectrum of disease-modification efforts in neurodegenerative diseases. SCT may hold greater promise in the treatment of neurodegenerative disorders, but much research is required to determine the feasibility, safety, and efficacy of these complementary aims of therapeutic efforts.
Collapse
|
20
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
21
|
Bal T, Karaoglu IC, Murat FS, Yalcin E, Sasaki Y, Akiyoshi K, Kizilel S. Immunological response of polysaccharide nanogel-incorporating PEG hydrogels in an in vivo diabetic model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1794-1810. [PMID: 35549832 DOI: 10.1080/09205063.2022.2077512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Cell-based therapies hold significant advantages in comparison with the traditional drug-based or injection-based treatments. However, for long-term functional cellular implants, immune acceptance must be established. To accomplish the acceptance of the implanted cells, various biomaterial systems have been studied. Nanogels have shown great potential for modulation of cellular microenvironments, acting as a physical barrier between the immune system and the implant. However, internalization of nano-scale materials by implanted cells is not desirable and is yet to be overcome. In this study, we incorporated acrylate modified cholesterol-bearing pullulan (CHPOA) nanogels into poly (ethylene glycol) diacrylate (PEGDA) hydrogels through covalent crosslinking, where we used visible light-induced photopolymerization. We characterized morphology and swelling properties of CHPOA incorporated PEG composite hydrogels using FE-SEM and gravimetric analysis. Also, we investigated the biocompatibility properties of composite hydrogels in vivo, where we used both healthy and diabetic mice. We induced diabetes in mice using a low dose streptozotocin (STZ) injections and implanted composite hydrogels in both diabetic and healthy mice through subcutaneous route. Immune cell infiltration of the retrieved tissue was examined through histological analysis, where we observed minimum immune response levels of 0-2 rareness, according to ISO standard of biological evaluation of medical devices. Our observation suggests that the composite hydrogel developed here can be used to introduce nanostructured domains into bulk hydrogels and that this system has potential to be used as immunologically acceptable composite material in cellular therapy without internalization of nanoparticles.
Collapse
Affiliation(s)
- Tugba Bal
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Ismail Can Karaoglu
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Fusun Sevval Murat
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Esra Yalcin
- Biomedical Science and Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Kyoto, Japan
- Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Kyoto, Japan
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
- Biomedical Science and Engineering, Koc University, Istanbul, Sariyer, Turkey
| |
Collapse
|
22
|
Monsour M, Garbuzova-Davis S, Borlongan CV. Patching Up the Permeability: The Role of Stem Cells in Lessening Neurovascular Damage in Amyotrophic Lateral Sclerosis. Stem Cells Transl Med 2022; 11:1196-1209. [PMID: 36181767 PMCID: PMC9801306 DOI: 10.1093/stcltm/szac072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating disease with poor prognosis. The pathophysiology of ALS is commonly debated, with theories involving inflammation, glutamate excitotoxity, oxidative stress, mitochondria malfunction, neurofilament accumulation, inadequate nutrients or growth factors, and changes in glial support predominating. These underlying pathological mechanisms, however, act together to weaken the blood brain barrier and blood spinal cord barrier, collectively considered as the blood central nervous system barrier (BCNSB). Altering the impermeability of the BCNSB impairs the neurovascular unit, or interdependent relationship between the brain and advances the concept that ALS is has a significant neurovascular component contributing to its degenerative presentation. This unique categorization of ALS opens a variety of treatment options targeting the reestablishment of BCNSB integrity. This review will critically assess the evidence implicating the significant neurovascular components of ALS pathophysiology, while also offering an in-depth discussion regarding the use of stem cells to repair these pathological changes within the neurovascular unit.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Corresponding author: Cesar V. Borlongan, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Grossman RG, Tang X, Horner PJ. Stereotaxic Atlas of the Human Lumbar-Sacral Spinal Cord. World Neurosurg 2022; 166:e460-e468. [PMID: 35840094 DOI: 10.1016/j.wneu.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE A Stereotaxic Atlas of the Human Lumbar-Sacral Spinal Cord has been created to provide an anatomical basis for radiologic and ultrasonic imaging and electrophysiological examination, which are used to target the placement of lumbar-sacral epidural stimulating electrodes and cellular transplantation in order to restore movement in individuals with sustained spinal cord injury or a degenerative disorder of the spinal cord. Through the availability of an atlas that exhibits axial images of the cytoarchitecture of each cord segment with a stereotaxic millimeter grid of dorsal-ventral depth from the midline dorsal surface of the cord and right-left distances from the midline of the cord, neuromodulation, and cellular therapy would undoubtedly be made not only more precise but also safer for patients. METHODS The atlas is based upon dimension measurements and subsequent serial sectioning, staining and high-resolution digital imaging of the lumbar-sacral enlargement of 20 adult human spinal cords. RESULTS Nissl stained cross-sections from cord segments L1-S3 illustrate the cytoarchitecture and stereotactic coordinates. CONCLUSIONS The atlas provides an anatomical basis for radiologic and physiologic confirmation of target localization in the lumbar-sacral spinal cord.
Collapse
Affiliation(s)
- Robert G Grossman
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Xiufeng Tang
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas, USA.
| |
Collapse
|
24
|
Khamaysa M, Pradat PF. Status of ALS Treatment, Insights into Therapeutic Challenges and Dilemmas. J Pers Med 2022; 12:1601. [PMID: 36294741 PMCID: PMC9605458 DOI: 10.3390/jpm12101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an extremely heterogeneous disease of motor neurons that eventually leads to death. Despite impressive advances in understanding the genetic, molecular, and pathological mechanisms of the disease, the only drug approved to date by both the FDA and EMA is riluzole, with a modest effect on survival. In this opinion view paper, we will discuss how to address some challenges for drug development in ALS at the conceptual, technological, and methodological levels. In addition, socioeconomic and ethical issues related to the legitimate need of patients to benefit quickly from new treatments will also be addressed. In conclusion, this brief review takes a more optimistic view, given the recent approval of two new drugs in some countries and the development of targeted gene therapies.
Collapse
Affiliation(s)
- Mohammed Khamaysa
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - Pierre-François Pradat
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
- Centre Référent SLA, Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC, Altnagelvin Hospital, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
25
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
26
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
27
|
Rezk S, Lashen S, El-Adl M, Elshopakey GE, Elghareeb MM, Hendam BM, Caceci T, Cenciarelli C, Marei HE. Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2022; 37:973-988. [PMID: 35075502 DOI: 10.1007/s11011-021-00890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022]
Abstract
Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1β, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-βAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.
Collapse
Affiliation(s)
- Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thomas Caceci
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine , Blacksburg, VA, USA
| | - Carlo Cenciarelli
- Departament of Biomedical Sciences, Institute of Translational Pharmacology-CNR, Rome, Italy
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Liu B, Li M, Zhang L, Chen Z, Lu P. Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:1633-1639. [PMID: 35017408 PMCID: PMC8820706 DOI: 10.4103/1673-5374.332123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a motor neuron degenerative disease that is also known as Lou Gehrig's disease in the United States, Charcot's disease in France, and motor neuron disease in the UK. The loss of motor neurons causes muscle wasting, paralysis, and eventually death, which is commonly related to respiratory failure, within 3-5 years after onset of the disease. Although there are a limited number of drugs approved for amyotrophic lateral sclerosis, they have had little success at treating the associated symptoms, and they cannot reverse the course of motor neuron degeneration. Thus, there is still a lack of effective treatment for this debilitating neurodegenerative disorder. Stem cell therapy for amyotrophic lateral sclerosis is a very attractive strategy for both basic and clinical researchers, particularly as transplanted stem cells and stem cell-derived neural progenitor/precursor cells can protect endogenous motor neurons and directly replace the lost or dying motor neurons. Stem cell therapies may also be able to re-establish the motor control of voluntary muscles. Here, we review the recent progress in the use of neural stem cells and neural progenitor cells for the treatment of amyotrophic lateral sclerosis. We focus on MN progenitor cells derived from fetal central nervous system tissue, embryonic stem cells, and induced pluripotent stem cells. In our recent studies, we found that transplanted human induced pluripotent stem cell-derived motor neuron progenitors survive well, differentiate into motor neurons, and extend axons into the host white matter, not only in the rostrocaudal direction, but also along motor axon tracts towards the ventral roots in the immunodeficient rat spinal cord. Furthermore, the significant motor axonal extension after neural progenitor cell transplantation in amyotrophic lateral sclerosis models demonstrates that motor neuron replacement therapy could be a promising therapeutic strategy for amyotrophic lateral sclerosis, particularly as a variety of stem cell derivatives, including induced pluripotent stem cells, are being considered for clinical trials for various diseases.
Collapse
Affiliation(s)
- Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lingyan Zhang
- iXCells Biotechnologies USA, Inc., San Diego, CA, USA; Amogene Biotech, Xiamen, Fujian Province, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education; Center of Neural Injury and Repair; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego; Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Gala D, Gurusamy V, Patel K, Damodar S, Swaminath G, Ullal G. Stem Cell Therapy for Post-Traumatic Stress Disorder: A Novel Therapeutic Approach. Diseases 2021; 9:diseases9040077. [PMID: 34842629 PMCID: PMC8628773 DOI: 10.3390/diseases9040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Stem cell therapy is a rapidly evolving field of regenerative medicine being employed for the management of various central nervous system disorders. The ability to self-renew, differentiate into specialized cells, and integrate into neuronal networks has positioned stem cells as an ideal mechanism for the treatment of epilepsy. Epilepsy is characterized by repetitive seizures caused by imbalance in the GABA and glutamate neurotransmission following neuronal damage. Stem cells provide benefit by reducing the glutamate excitotoxicity and strengthening the GABAergic inter-neuron connections. Similar to the abnormal neuroanatomic location in epilepsy, post-traumatic stress disorder (PTSD) is caused by hyperarousal in the amygdala and decreased activity of the hippocampus and medial prefrontal cortex. Thus, stem cells could be used to modulate neuronal interconnectivity. In this review, we provide a rationale for the use of stem cell therapy in the treatment of PTSD.
Collapse
|
31
|
Fernandez-Muñoz B, Garcia-Delgado AB, Arribas-Arribas B, Sanchez-Pernaute R. Human Neural Stem Cells for Cell-Based Medicinal Products. Cells 2021; 10:2377. [PMID: 34572024 PMCID: PMC8469920 DOI: 10.3390/cells10092377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Neural stem cells represent an attractive tool for the development of regenerative therapies and are being tested in clinical trials for several neurological disorders. Human neural stem cells can be isolated from the central nervous system or can be derived in vitro from pluripotent stem cells. Embryonic sources are ethically controversial and other sources are less well characterized and/or inefficient. Recently, isolation of NSC from the cerebrospinal fluid of patients with spina bifida and with intracerebroventricular hemorrhage has been reported. Direct reprogramming may become another alternative if genetic and phenotypic stability of the reprogrammed cells is ensured. Here, we discuss the advantages and disadvantages of available sources of neural stem cells for the production of cell-based therapies for clinical applications. We review available safety and efficacy clinical data and discuss scalability and quality control considerations for manufacturing clinical grade cell products for successful clinical application.
Collapse
Affiliation(s)
- Beatriz Fernandez-Muñoz
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Ana Belen Garcia-Delgado
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| | - Blanca Arribas-Arribas
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rosario Sanchez-Pernaute
- Cellular Reprogramming and Production Unit, Andalusian Network for the Design and Translation of Advanced Therapies, 41092 Sevilla, Spain; (A.B.G.-D.); (B.A.-A.)
| |
Collapse
|
32
|
Aishwarya L, Arun D, Kannan S. Stem cells as a potential therapeutic option for treating neurodegenerative diseases. Curr Stem Cell Res Ther 2021; 17:590-605. [PMID: 35135464 DOI: 10.2174/1574888x16666210810105136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
In future, neurodegenerative diseases will take over cancer's place and become the major cause of death in the world, especially in developed countries. Advancements in the medical field and its facilities have led to an increase in the old age population, and thus contributing to the increase in number of people suffering from neurodegenerative diseases. Economically it is of a great burden to society and the affected family. No current treatment aims to replace, protect, and regenerate lost neurons; instead, it alleviates the symptoms, extends the life span by a few months and creates severe side effects. Moreover, people who are affected are physically dependent for performing their basic activities, which makes their life miserable. There is an urgent need for therapy that could be able to overcome the deficits of conventional therapy for neurodegenerative diseases. Stem cells, the unspecialized cells with the properties of self-renewing and potency to differentiate into various cells types can become a potent therapeutic option for neurodegenerative diseases. Stem cells have been widely used in clinical trials to evaluate their potential in curing different types of ailments. In this review, we discuss the various types of stem cells and their potential use in the treatment of neurodegenerative disease based on published preclinical and clinical studies.
Collapse
Affiliation(s)
- Aishwarya L
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Dharmarajan Arun
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Suresh Kannan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| |
Collapse
|
33
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
34
|
He Q, Colon‐Motas KM, Pybus AF, Piendel L, Seppa JK, Walker ML, Manzanares CM, Qiu D, Miocinovic S, Wood LB, Levey AI, Lah JJ, Singer AC. A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12178. [PMID: 34027028 PMCID: PMC8118113 DOI: 10.1002/trc2.12178] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/31/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION We and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation. METHODS Ten patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design. RESULTS Gamma flicker was safe, tolerable, and adherable. Participants' neural activity entrained to stimulation. Magnetic resonance imaging and cerebral spinal fluid proteomics show preliminary evidence that prolonged flicker affects neural networks and immune factors in the nervous system. DISCUSSION These findings show that prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects, supporting further study of gamma stimulation in AD.
Collapse
Affiliation(s)
- Qiliang He
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| | - Kay M. Colon‐Motas
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
| | - Alyssa F. Pybus
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lydia Piendel
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
| | - Jonna K. Seppa
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
| | - Margaret L. Walker
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Cecelia M. Manzanares
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Deqiang Qiu
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
- Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaGeorgiaUSA
| | - Svjetlana Miocinovic
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Allan I. Levey
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory Brain Health CenterEmory UniversityAtlantaGeorgiaUSA
- Goizueta Alzheimer Disease Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
35
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
36
|
Abstract
Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, 34753West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Xiong
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, 34753West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, Sichuan Province, PR China
| |
Collapse
|
37
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
38
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
39
|
Kubelick KP, Emelianov SY. A Trimodal Ultrasound, Photoacoustic and Magnetic Resonance Imaging Approach for Longitudinal Post-operative Monitoring of Stem Cells in the Spinal Cord. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3468-3474. [PMID: 32988671 PMCID: PMC7709928 DOI: 10.1016/j.ultrasmedbio.2020.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Longitudinal monitoring of stem cells in the spinal cord could unveil critical information needed to understand regenerative processes, thereby expediting therapy development and translation. We introduce a post-operative trimodal imaging approach to monitor stem cells in the spinal cord over time. A key aspect of the approach is to label the stem cells with Prussian blue nanocubes (PBNCs), which simultaneously possess optical and magnetic properties for ultrasound-guided photoacoustic (US/PA) and magnetic resonance imaging (MRI) contrast. PBNC-Labeled stem cells were injected into the spinal cord of immunodeficient rats and tracked with US/PA imaging and MRI up to 14 d post-injection. Good agreement was observed between imaging modalities in vivo. Our results suggest that further development of the US/PA/MR imaging approach may create a powerful tool to aid development of regenerative therapies of the spinal cord, and the non-invasive imaging approach can ultimately be deployed in intra- and post-operative environments.
Collapse
Affiliation(s)
- Kelsey P Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
40
|
Meinhold W, Martinez DE, Oshinski J, Hu AP, Ueda J. A Direct Drive Parallel Plane Piezoelectric Needle Positioning Robot for MRI Guided Intraspinal Injection. IEEE Trans Biomed Eng 2020; 68:807-814. [PMID: 32870782 DOI: 10.1109/tbme.2020.3020926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent developments in the field of cellular therapeutics have indicated the potential of stem cell injections directly to the spinal cord. Injections require either open surgery or a Magnetic Resonance Imaging (MRI) guided injection. Needle positioning during MRI imaging is a significant hurdle to direct spinal injection, as the small target region and interlaminar space require high positioning accuracy. OBJECTIVE To improve both the procedure time and positioning accuracy, an MRI guided robotic needle positioning system is developed. METHODS The robot uses linear piezoelectric motors to directly drive a parallel plane positioning mechanism. Feedback is provided through MRI during the orientation procedure. Both accuracy and repeatability of the robot are characterized. RESULTS This system is found to be capable of repeatability below 51 μm. Needle endpoint error is limited by imaging modality, but is validated to 156 μm. CONCLUSION The reported robot and MRI image feedback system is capable of repeatable and accurate needle guide positioning. SIGNIFICANCE This high accuracy will result in a significant improvement to the workflow of spinal injection procedures.
Collapse
|
41
|
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets 2020; 24:971-984. [PMID: 32746659 DOI: 10.1080/14728222.2020.1805734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating disease with a lifetime risk of approximately 1:400. It is incurable and invariably fatal. Average survival is between 3 and 5 years and patients become increasingly paralyzed, losing the ability to speak, eat, and breathe. Therapies in development either (i) target specific familial forms of ALS (comprising a minority of around 10% of cases) or ii) emanate from (over)reliance on animal models or non-human/non-neuronal cell models. There is a desperate and unmet clinical need for effective treatments. Deciphering the primacy and relative contributions of defective protein homeostasis and RNA metabolism in ALS across different model systems will facilitate the identification of putative therapeutic targets. AREAS COVERED This review examines the putative common primary molecular events that lead to ALS pathogenesis. We focus on deregulated RNA metabolism, protein mislocalization/pathological aggregation and the role of glia in ALS-related motor neuron degeneration. Finally, we describe promising targets for therapeutic evaluation. EXPERT OPINION Moving forward, an effective strategy could be achieved by a poly-therapeutic approach which targets both deregulated RNA metabolism and protein dyshomeostasis in the relevant cell types, at the appropriate phase of disease.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London , London, UK.,Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute , London, UK
| |
Collapse
|
42
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Kubelick KP, Emelianov SY. In vivo photoacoustic guidance of stem cell injection and delivery for regenerative spinal cord therapies. NEUROPHOTONICS 2020; 7:030501. [PMID: 32743015 PMCID: PMC7388074 DOI: 10.1117/1.nph.7.3.030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/14/2020] [Indexed: 05/16/2023]
Abstract
Significance: Stem cell therapies are of interest for treating a variety of neurodegenerative diseases and injuries of the spinal cord. However, the lack of techniques for longitudinal monitoring of stem cell therapy progression is inhibiting clinical translation. Aim: The goal of this study is to demonstrate an intraoperative imaging approach to guide stem cell injection to the spinal cord in vivo. Results may ultimately support the development of an imaging tool that spans intra- or postoperative environments to guide therapy throughout treatment. Approach: Stem cells were labeled with Prussian blue nanocubes (PBNCs) to facilitate combined ultrasound and photoacoustic (US/PA) imaging to visualize stem cell injection and delivery to the spinal cord in vivo. US/PA results were confirmed by magnetic resonance imaging (MRI) and histology. Results: Real-time intraoperative US/PA image-guided injection of PBNC-labeled stem cells and three-dimensional volumetric images of injection provided feedback necessary for successful delivery of therapeutics into the spinal cord. Postoperative MRI confirmed delivery of PBNC-labeled stem cells. Conclusions: The nanoparticle-augmented US/PA approach successfully detected injection and delivery of stem cells into the spinal cord, confirmed by MRI. Our work demonstrated in vivo feasibility, which is a critical step toward the development of a US/PA/MRI platform to monitor regenerative spinal cord therapies.
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Georgia Institute of Technology, Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Stanislav Y. Emelianov
- Georgia Institute of Technology, Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| |
Collapse
|
44
|
Kubelick KP, Emelianov SY. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord. PHOTOACOUSTICS 2020; 18:100166. [PMID: 32211291 PMCID: PMC7082547 DOI: 10.1016/j.pacs.2020.100166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 05/16/2023]
Abstract
Translation of stem cell therapies to treat injuries and diseases of the spinal cord is hindered by lack of real-time monitoring techniques to guide regenerative therapies intra- and postoperatively. Thus, we developed an ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) imaging approach augmented with Prussian blue nanocubes (PBNCs) to guide stem cell injections intraoperatively and monitor stem cell therapies in the spinal cord postoperatively. Per the clinical procedure, a multi-level laminectomy was performed in rats ex vivo, and PBNC-labeled stem cells were injected directly into the spinal cord while US/PA images were acquired. US/PA/MR images were also acquired post-surgery. Several features of the imaging approach were demonstrated including detection of low stem cell concentrations, real-time needle guidance and feedback on stem cell delivery, and good agreement between US/PA/MR images. These benefits span intra- and postoperative environments to support future development of this imaging tool.
Collapse
Key Words
- AuNS, gold nanosphere
- DIUF, deionized ultra-filtered water
- IACUC, Institutional Animal Care and Use Committee
- LOD, limit of detection
- MRI, magnetic resonance imaging
- MSC, mesenchymal stem cell
- Magnetic resonance imaging
- Multimodal imaging
- Nanoparticles
- OR, operating room
- PA, photoacoustic
- PBNC, Prussian blue nanocube
- PBS, phosphate buffered saline
- Photoacoustic imaging
- SPION, superparamagnetic iron oxide nanoparticle
- Spinal cord
- Stem cells
- TE, echo time
- TEM, transmission electron microscopy
- TR, repetition time
- US, ultrasound
- Ultrasound
Collapse
Affiliation(s)
- Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
45
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
47
|
Antonios JP, Farah GJ, Cleary DR, Martin JR, Ciacci JD, Pham MH. Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury. Neurosurg Focus 2020; 46:E9. [PMID: 30835678 DOI: 10.3171/2018.12.focus18589] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.
Collapse
Affiliation(s)
- Joseph P Antonios
- 1David Geffen School of Medicine, University of California, Los Angeles, Los Angeles; and
| | - Ghassan J Farah
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Daniel R Cleary
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joel R Martin
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Joseph D Ciacci
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| | - Martin H Pham
- 2Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California
| |
Collapse
|
48
|
Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC. Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. SCIENCE ADVANCES 2020; 6:eaaz1039. [PMID: 32270042 PMCID: PMC7112763 DOI: 10.1126/sciadv.aaz1039] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Transplantation of patient-derived Schwann cells is a promising regenerative medicine therapy for spinal cord injuries; however, therapeutic efficacy is compromised by inefficient cell delivery. We present a materials-based strategy that addresses three common causes of transplanted cell death: (i) membrane damage during injection, (ii) cell leakage from the injection site, and (iii) apoptosis due to loss of endogenous matrix. Using protein engineering and peptide-based assembly, we designed injectable hydrogels with modular cell-adhesive and mechanical properties. In a cervical contusion model, our hydrogel matrix resulted in a greater than 700% improvement in successful Schwann cell transplantation. The combination therapy of cells and gel significantly improved the spatial distribution of transplanted cells within the endogenous tissue. A reduction in cystic cavitation and neuronal loss were also observed with substantial increases in forelimb strength and coordination. Using an injectable hydrogel matrix, therefore, can markedly improve the outcomes of cellular transplantation therapies.
Collapse
Affiliation(s)
- Laura M. Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanessa M. Doulames
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alice T. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karen Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Riley A. Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Zachary A. Medress
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giles W. Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| |
Collapse
|
49
|
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729:146615. [DOI: 10.1016/j.brainres.2019.146615] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
|
50
|
Huang H, Chen L, Mao G, Sharma HS. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Clinical cell therapies (CTs) for neurological diseases and cellular damage have been explored for more than 2 decades. According to the United States Food and Drug Administration, there are 2 types of cell categories for therapy, namely stem cell-derived CT products and mature/functionally differentiated cell-derived CT products. However, regardless of the type of CT used, the majority of reports of clinical CTs from either small sample sizes based on single-center phase 1 or 2 unblinded trials or retrospective clinical studies showed effects on neurological improvement and the ability to either partially or temporarily thwart the deteriorating cellular processes of the neurodegenerative diseases. There have been only a few prospective, multicenter, randomized, double- blind placebo-control clinical trials of CTs so far in this developing novel area that have shown negative results, and more clinical trials are needed. This will expand our knowledge in exploring the type of cells that yield promising results and restore damaged neurological structure and functions of the central nervous system based on higher level evidence-based medical data. In this review, we briefly introduce the developmental process, current state, and future prospective for clinical neurorestorative CT.
Collapse
|