1
|
Andrews SH, Klinker MW, Bauer SR, Marklein RA. Morphological landscapes from high content imaging reveal cytokine priming strategies that enhance mesenchymal stromal cell immunosuppression. Biotechnol Bioeng 2021; 119:361-375. [PMID: 34716713 DOI: 10.1002/bit.27974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Successful clinical translation of mesenchymal stromal cell (MSC) products has not been achieved in the United States and may be in large part due to MSC functional heterogeneity. Efforts have been made to identify "priming" conditions that produce MSCs with consistent immunomodulatory function; however, challenges remain with predicting and understanding how priming impacts MSC behavior. The purpose of this study was to develop a high throughput, image-based approach to assess MSC morphology in response to combinatorial priming treatments and establish morphological profiling as an effective approach to screen the effect of manufacturing changes (i.e., priming) on MSC immunomodulation. We characterized the morphological response of multiple MSC lines/passages to an array of Interferon-gamma (IFN-γ) and tumor necrosis factor-⍺ (TNF-⍺) priming conditions, as well as the effects of priming on MSC modulation of activated T cells and MSC secretome. Although considerable functional heterogeneity, in terms of T-cell suppression, was observed between different MSC lines and at different passages, this heterogeneity was significantly reduced with combined IFN-γ/TNF-⍺ priming. The magnitude of this change correlated strongly with multiple morphological features and was also reflected by MSC secretion of immunomodulatory factors, for example, PGE2, ICAM-1, and CXCL16. Overall, this study further demonstrates the ability of priming to enhance MSC function, as well as the ability of morphology to better understand MSC heterogeneity and predict changes in function due to manufacturing.
Collapse
Affiliation(s)
- Seth H Andrews
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross A Marklein
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC, Bauer SR. Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ-stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 2018; 21:17-31. [PMID: 30503100 DOI: 10.1016/j.jcyt.2018.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages. METHODS We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay. RESULTS Multiple IFN-γ-stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques. DISCUSSION This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.
Collapse
Affiliation(s)
- Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Elizabeth C Lessey-Morillon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
3
|
Dhaliwal A, Pelka S, Gray DS, Moghe PV. Engineering Lineage Potency and Plasticity of Stem Cells using Epigenetic Molecules. Sci Rep 2018; 8:16289. [PMID: 30389989 PMCID: PMC6215020 DOI: 10.1038/s41598-018-34511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Stem cells are considered as a multipotent regenerative source for diseased and dysfunctional tissues. Despite the promise of stem cells, the inherent capacity of stem cells to convert to tissue-specific lineages can present a major challenge to the use of stem cells for regenerative medicine. We hypothesized that epigenetic regulating molecules can modulate the stem cell’s developmental program, and thus potentially overcome the limited lineage differentiation that human stem cells exhibit based on the source and processing of stem cells. In this study, we screened a library of 84 small molecule pharmacological agents indicated in nucleosomal modification and identified a sub-set of specific molecules that influenced osteogenesis in human mesenchymal stem cells (hMSCs) while maintaining cell viability in-vitro. Pre-treatment with five candidate hits, Gemcitabine, Decitabine, I-CBP112, Chidamide, and SIRT1/2 inhibitor IV, maximally enhanced osteogenesis in-vitro. In contrast, five distinct molecules, 4-Iodo-SAHA, Scriptaid, AGK2, CI-amidine and Delphidine Chloride maximally inhibited osteogenesis. We then tested the role of these molecules on hMSCs derived from aged human donors and report that small epigenetic molecules, namely Gemcitabine and Chidamide, can significantly promote osteogenic differentiation by 5.9- and 2.3-fold, respectively. Taken together, this study demonstrates new applications of identified small molecule drugs for sensitively regulating the lineage plasticity fates of bone-marrow derived mesenchymal stem cells through modulating the epigenetic profile of the cells.
Collapse
Affiliation(s)
- Anandika Dhaliwal
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Sandra Pelka
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - David S Gray
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States. .,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
4
|
Lam J, Bellayr IH, Marklein RA, Bauer SR, Puri RK, Sung KE. Functional Profiling of Chondrogenically Induced Multipotent Stromal Cell Aggregates Reveals Transcriptomic and Emergent Morphological Phenotypes Predictive of Differentiation Capacity. Stem Cells Transl Med 2018; 7:664-675. [PMID: 30084545 PMCID: PMC6127231 DOI: 10.1002/sctm.18-0065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Multipotent stromal cells (MSCs) are an attractive cell source for bone and cartilage tissue repair strategies. However, the functional heterogeneity of MSCs derived from different donors and manufacturing conditions has limited clinical translation, emphasizing the need for improved methods to assess MSC chondrogenic capacity. We used functionally relevant morphological profiling to dynamically monitor emergent morphological phenotypes of chondrogenically induced MSC aggregates to identify morphological features indicative of MSC chondrogenesis. Toward this goal, we characterized the morphology of chondrogenically stimulated MSC aggregates from eight different human cell-lines at multiple passages and demonstrated that MSC aggregates exhibited unique morphological dynamics that were both cell line- and passage-dependent. This variation in 3D morphology was shown to be informative of long-term MSC chondrogenesis based on multiple quantitative functional assays. We found that the specific morphological features of spheroid area, radius, minimum feret diameter, and minor axis length to be strongly correlated with MSC chondrogenic synthetic activity but not gene expression as early as day 4 in 3D culture. Our high-throughput, nondestructive approach could potentially serve as a tool to identify MSC lines with desired chondrogenic capacity toward improving manufacturing strategies for MSC-based cellular products for cartilage tissue repair. Stem Cells Translational Medicine 2018;1-12.
Collapse
Affiliation(s)
- Johnny Lam
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ian H Bellayr
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Arcidiacono JA, Bauer SR, Kaplan DS, Allocca CM, Sarkar S, Lin-Gibson S. FDA and NIST collaboration on standards development activities supporting innovation and translation of regenerative medicine products. Cytotherapy 2018; 20:779-784. [PMID: 29784433 DOI: 10.1016/j.jcyt.2018.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
Abstract
The development of standards for the field of regenerative medicine has been noted as a high priority by several road-mapping activities. Additionally, the U.S. Congress recognizes the importance of standards in the 21st Century Cure Act. Standards will help to accelerate and streamline cell and gene therapy product development, ensure the quality and consistency of processes and products, and facilitate their regulatory approval. Although there is general agreement for the need of additional standards for regenerative medicine products, a shared understanding of standards is required for real progress toward the development of standards to advance regenerative medicine. Here, we describe the roles of standards in regenerative medicine as well as the process for standards development and the interactions of different entities in the standards development process. Highlighted are recent coordinated efforts between the U.S. Food and Drug Administration and the National Institute of Standards and Technology to facilitate standards development and foster science that underpins standards development.
Collapse
Affiliation(s)
- Judith A Arcidiacono
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Steven R Bauer
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - David S Kaplan
- Office of Science and Engineering Laboratory, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD USA
| | - Clare M Allocca
- Standards Coordination Office, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Sumona Sarkar
- Biosystems and Biomaterials Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
6
|
Bellayr IH, Kumar A, Puri RK. MicroRNA expression in bone marrow-derived human multipotent Stromal cells. BMC Genomics 2017; 18:605. [PMID: 28800721 PMCID: PMC5553681 DOI: 10.1186/s12864-017-3997-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Multipotent stromal cells (MSCs) are being studied in the field of regenerative medicine for their multi-lineage differentiation and immunoregulatory capacity. MicroRNAs (miRNAs) are short non-coding RNAs that are responsible for regulating gene expression by targeting transcripts, which can impact MSC functions such as cellular proliferation, differentiation, migration and cell death. miRNAs are expressed in MSCs; however, the impact of miRNAs on cellular functions and donor variability is not well understood. Eight MSC lines were expanded to passages 3, 5 and 7, and their miRNA expression was evaluated using microarray technology. Results Statistical analyses of our data revealed that 71 miRNAs out of 939 examined were expressed by this set of MSC lines at all passages and the expression of 11 miRNAs were significantly different between passages 3 and 7, while the expression of 7 miRNAs was significantly different between passages 3 and 5. The expression of these identified miRNAs was evaluated using RT-qPCR for both the first set of MSC lines (n = 6) and a second set of MSC lines (n = 7) expanded from passages 4 to 8. By RT-qPCR only 2 miRNAs, miR-638 and miR-572 were upregulated at passage 7 compared to passage 3 in the first set of MSC lines by 1.71 and 1.54 fold, respectively; and upregulated at passage 8 compared to passage 4 in the second set of MSC lines, 1.35 and 1.59 fold, respectively. Conclusions The expression of miR-638 and miR-572 can distinguish MSCs from two different passages of cell culture. These results may be useful in establishing critical quality attributes of MSCs and determining whether changes in these two miRNAs impact cellular functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3997-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian H Bellayr
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Abhinav Kumar
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
7
|
DiCarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, Macchiarini F, Maidment BW, Jourdain JR. Cellular Therapies for Treatment of Radiation Injury: Report from a NIH/NIAID and IRSN Workshop. Radiat Res 2017; 188:e54-e75. [PMID: 28605260 DOI: 10.1667/rr14810.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, there has been increasing concern over the possibility of a radiological or nuclear incident occurring somewhere in the world. Intelligence agencies frequently report that terrorist groups and rogue nations are seeking to obtain radiological or nuclear weapons of mass destruction. In addition, there exists the real possibility that safety of nuclear power reactors could be compromised by natural (such as the tsunami and subsequent Fukushima accident in Japan in March, 2011) or accidental (Three Mile Island, 1979 and Chernobyl, 1986) events. Although progress has been made by governments around the world to prepare for these events, including the stockpiling of radiation countermeasures, there are still challenges concerning care of patients injured during a radiation incident. Because the deleterious and pathological effects of radiation are so broad, it is desirable to identify medical countermeasures that can have a beneficial impact on several tissues and organ systems. Cellular therapies have the potential to impact recovery and tissue/organ regeneration for both early and late complications of radiation exposure. These therapies, which could include stem or blood progenitor cells, mesenchymal stromal cells (MSCs) or cells derived from other tissues (e.g., endothelium or placenta), have shown great promise in treating other nonradiation injuries to and diseases of the bone marrow, skin, gastrointestinal tract, brain, lung and heart. To explore the potential use of these therapies in the treatment of victims after acute radiation exposure, the National Institute of Allergy and Infectious Diseases co-sponsored an international workshop in July, 2015 in Paris, France with the Institut de Radioprotection et de Sûreté Nucléaire. The workshop included discussions of data available from testing in preclinical models of radiation injury to different organs, logistics associated with the practical use of cellular therapies for a mass casualty incident, as well as international regulatory requirements for authorizing such drug products to be legally and readily used in such incidents. This report reviews the data presented, as well as key discussion points from the meeting.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Radia Tamarat
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Carmen I Rios
- a Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Marc Benderitter
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Francesca Macchiarini
- e Previously -RNCP, DAIT, NIAID, NIH; now National Institute on Aging (NIA), NIH, Bethesda, Maryland
| | | | - Jean-Rene Jourdain
- b Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Kusinitz M, Braunstein E, Wilson CA. Advancing Public Health Using Regulatory Science to Enhance Development and Regulation of Medical Products: Food and Drug Administration Research at the Center for Biologics Evaluation and Research. Front Med (Lausanne) 2017; 4:71. [PMID: 28660187 PMCID: PMC5466996 DOI: 10.3389/fmed.2017.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023] Open
Abstract
Center for Biologics Evaluation and Research enhances and supports regulatory decision-making and policy development. This work contributes to our regulatory mission, advances medical product development, and supports Food and Drug Administration’s regulatory response to public health crises. This review presents some examples of our diverse scientific work undertaken in recent years to support our regulatory and public health mission.
Collapse
|
9
|
Altman RB, Khuri N, Salit M, Giacomini KM. Unmet needs: Research helps regulators do their jobs. Sci Transl Med 2016; 7:315ps22. [PMID: 26606966 DOI: 10.1126/scitranslmed.aac4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A plethora of innovative new medical products along with the need to apply modern technologies to medical-product evaluation has spurred seminal opportunities in regulatory sciences. Here, we provide eight examples of regulatory science research for diverse products. Opportunities abound, particularly in data science and precision health.
Collapse
Affiliation(s)
- Russ B Altman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Natalia Khuri
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA 94305, USA. Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94143-2911, USA
| | - Marc Salit
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA 94305, USA. Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94143-2911, USA. Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Rovira Gonzalez YI, Lynch PJ, Thompson EE, Stultz BG, Hursh DA. In vitro cytokine licensing induces persistent permissive chromatin at the Indoleamine 2,3-dioxygenase promoter. Cytotherapy 2016; 18:1114-28. [PMID: 27421739 DOI: 10.1016/j.jcyt.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are being investigated as therapies for inflammatory diseases due to their immunosuppressive capacity. Interferon (IFN)-γ treatment primes MSC immunosuppression partially through induction of Indoleamine 2,3-dioxygenase (IDO1), which depletes tryptophan necessary to support proliferation of activated T cells. We investigated the role of histone modifications in the timing and maintenance of induced IDO1 expression in MSCs under clinical manufacturing conditions, such as cryopreservation. METHODS We used chromatin immunoprecipitation and quantitative polymerase chain reaction (PCR) to assay levels of transcriptionally permissive acetylated H3K9 and repressive trimethylated H3K9 histone modifications surrounding the transcriptional start site for IDO1, and reverse transcriptase PCR and immunoblotting to detect messenger RNA (mRNA) and protein. RESULTS MSCs derived from three donors approached maximum IDO1 mRNA levels following 24 hours of in vitro cytokine treatment. Induction of IDO1 expression correlated with increased acetylation of H3K9 concomitant with reduction of trimethylated H3K9 modifications at the promoter. Examination of two additional donors confirmed this result. While induced IDO1 levels decreased within 2 days after cytokine removal and freeze thawing, the activated chromatin state was maintained. Upon re-exposure to cytokines, previously primed MSCs accumulated near-maximum IDO1 mRNA levels within 4-8 h. DISCUSSION Our data indicate that in vitro priming of MSCs causes chromatin remodeling at the IDO1 promoter, that this alteration is maintained during processing commonly used to prepare MSCs for clinical use and that, once primed, MSCs are poised for IDO1 expression even in the absence of cytokines.
Collapse
Affiliation(s)
- Yazmin I Rovira Gonzalez
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick J Lynch
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Elaine E Thompson
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brian G Stultz
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Deborah A Hursh
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
11
|
Bellayr IH, Marklein RA, Lo Surdo JL, Bauer SR, Puri RK. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation. Stem Cells Dev 2016; 25:861-73. [PMID: 27036644 DOI: 10.1089/scd.2015.0374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a particular cellular therapy in lieu of an extended in vitro or in vivo assay.
Collapse
Affiliation(s)
- Ian H Bellayr
- 1 Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Ross A Marklein
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Jessica L Lo Surdo
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Steven R Bauer
- 2 Division of Cellular and Gene Therapies, Cellular and Tissue Therapies Branch, Center for Biologics Evaluation and Research , US Food and Drug Administration, Silver Spring, Maryland
| | - Raj K Puri
- 1 Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research , US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
12
|
Marklein RA, Lo Surdo JL, Bellayr IH, Godil SA, Puri RK, Bauer SR. High Content Imaging of Early Morphological Signatures Predicts Long Term Mineralization Capacity of Human Mesenchymal Stem Cells upon Osteogenic Induction. Stem Cells 2016; 34:935-47. [PMID: 26865267 DOI: 10.1002/stem.2322] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/30/2015] [Indexed: 01/05/2023]
Abstract
Human bone marrow-derived multipotent mesenchymal stromal cells, often referred to as mesenchymal stem cells (MSCs), represent an attractive cell source for many regenerative medicine applications due to their potential for multi-lineage differentiation, immunomodulation, and paracrine factor secretion. A major complication for current MSC-based therapies is the lack of well-defined characterization methods that can robustly predict how they will perform in a particular in vitro or in vivo setting. Significant advances have been made with identifying molecular markers of MSC quality and potency using multivariate genomic and proteomic approaches, and more recently with advanced techniques incorporating high content imaging to assess high-dimensional single cell morphological data. We sought to expand upon current methods of high dimensional morphological analysis by investigating whether short term cell and nuclear morphological profiles of MSCs from multiple donors (at multiple passages) correlated with long term mineralization upon osteogenic induction. Using the combined power of automated high content imaging followed by automated image analysis, we demonstrated that MSC morphology after 3 days was highly correlated with 35 day mineralization and comparable to other methods of MSC osteogenesis assessment (such as alkaline phosphatase activity). We then expanded on this initial morphological characterization and identified morphological features that were highly predictive of mineralization capacities (>90% accuracy) of MSCs from additional donors and different manufacturing techniques using linear discriminant analysis. Together, this work thoroughly demonstrates the predictive power of MSC morphology for mineralization capacity and motivates further studies into MSC morphology as a predictive marker for additional in vitro and in vivo responses.
Collapse
Affiliation(s)
- Ross A Marklein
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Lo Surdo
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ian H Bellayr
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Saniya A Godil
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raj K Puri
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
13
|
Stultz BG, McGinnis K, Thompson EE, Lo Surdo JL, Bauer SR, Hursh DA. Chromosomal stability of mesenchymal stromal cells during in vitro culture. Cytotherapy 2016; 18:336-43. [PMID: 26780865 DOI: 10.1016/j.jcyt.2015.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/27/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being investigated for use in cell therapy. The extensive in vitro expansion necessary to obtain sufficient cells for clinical use increases the risk that genetically abnormal cells will arise and be propagated during cell culture. Genetic abnormalities may lead to transformation and poor performance in clinical use, and are a critical safety concern for cell therapies using MSCs. METHODS We used spectral karyotyping (SKY) to investigate the genetic stability of human MSCs from ten donors during passaging. RESULTS Our data indicate that chromosomal abnormalities exist in MSCs at early passages and can be clonally propagated. The karyotypic abnormalities observed during our study diminished during passage. CONCLUSIONS Karyotyping of MSCs reveals characteristics which may be valuable in deciding the suitability of cells for further use. Karyotypic analysis is useful for monitoring the genetic stability of MSCs during expansion.
Collapse
Affiliation(s)
- Brian G Stultz
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen McGinnis
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elaine E Thompson
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Lo Surdo
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Deborah A Hursh
- Division of Cell and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
14
|
Rui Y, Xu L, Chen R, Zhang T, Lin S, Hou Y, Liu Y, Meng F, Liu Z, Ni M, Sze Tsang K, Yang F, Wang C, Chang Chan H, Jiang X, Li G. Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells. Sci Rep 2015; 5:11056. [PMID: 26053250 PMCID: PMC4459169 DOI: 10.1038/srep11056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are highly plastic cells that are able to transdifferentiate or dedifferentiate under appropriate conditions. In the present study, we reported here that after in vitro induction of osteogenic differentiation, MSCs could be reverted to a primitive stem cell population (dedifferentiated osteogenic MSCs, De-Os-MSCs) with improved cell survival, colony formation, osteogenic potential, migratory capacity and increased expression of Nanog, Oct4 and Sox2. Most importantly, our results showed great superiority of the De-Os-MSCs over untreated MSCs in ectopic bone formation in vivo. Furthermore, Nanog-knockdown in MSCs could reverse these enhanced properties in De-Os-MSCs in vitro, indicating a central role of Nanog in the transcriptional network. In addition, epigenetic regulations including DNA methylation and histone modifications may play important roles in regulating the de-osteogenic differentiation process. And we found decreased methylation and promoter accrual of activating histone marks, such as H3K4me3 and H4ac on both Nanog and Oct4 gene promoters. Taken together, our study demonstrated that epigenetic memory in De-Os-MSCs gained by priming with osteogenic induction medium favored their differentiation along osteoblastic lineage with improved cell survival and migratory abilities, which may have application potential in enhancing their regenerative capacity in mammals.
Collapse
Affiliation(s)
- Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Liangliang Xu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Rui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ting Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Sien Lin
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Yonghui Hou
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Yang Liu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Fanbiao Meng
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Zhenqing Liu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Ni
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
- The Department of Orthopaedics, The General Hospital of Chinese People’s Liberation Army, Beijing, PR China
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Fuyuan Yang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, Jiangsu, PR China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|