1
|
Ramenzoni LL, Varghese J, Schmidlin PR, Mehrotra S. Effects of i-PRF, A-PRF+, and EMD on Osteogenic Potential of Osteoblasts on Titanium. Clin Implant Dent Relat Res 2025; 27:e13406. [PMID: 39438767 PMCID: PMC11789841 DOI: 10.1111/cid.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The study evaluates three biologically active substances with known bone-inductive potential on previously decontaminated titanium (Ti) discs. MATERIAL AND METHODS Rough and smooth Ti surfaces were contaminated with a multispecies biofilm and cleaned with a chitosan brush. Discs were treated either with injectable-platelet-rich fibrin (i-PRF), advanced platelet-rich fibrin (A-PRF+), or enamel matrix derivatives (EMDs) before osteoblast seeding. RESULTS Biocompatibility, adhesion, migration, and gene expression of runt-related transcription factor 2 (RUNX2), collagen Type I Alpha 2 (COL1a2), alkaline phosphatase (ALP), osteocalcin (OC), and osteonectin (ON) were performed. All the tested biologic agents similarly increased cell viability. Specifically, osteoblasts seeded over i-PRF and EMD-treated surfaces showed improvement in adhesion and migration and significantly increased ALP, OC, ON, RUNX-2, and COL1a2 mRNA levels up to 2.8 fold (p < 0.05) with no differences between Ti surfaces. CONCLUSIONS i-PRF and EMD possess beneficial bioactive properties that enhance tissue healing and promote regeneration on thoroughly sterilized surfaces. Biologically active materials may hold the potential to influence the process of implant re-osseointegration, which warrants more research since sterilization of the affected surfaces under clinical conditions is still not reliably possible and remains one of the greatest challenges.
Collapse
Affiliation(s)
- Liza Lima Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri‐Implant Diseases, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
| | - Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, ManipalManipal Academy of Higher EducationManipalIndia
| | - Patrick Roger Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri‐Implant Diseases, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
| | - Shubhankar Mehrotra
- Department of Periodontology, Manipal College of Dental Sciences, ManipalManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
2
|
Gross T, Dieterle MP, Vach K, Altenburger MJ, Hellwig E, Proksch S. Biomechanical Modulation of Dental Pulp Stem Cell (DPSC) Properties for Soft Tissue Engineering. Bioengineering (Basel) 2023; 10:bioengineering10030323. [PMID: 36978714 PMCID: PMC10045720 DOI: 10.3390/bioengineering10030323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Dental pulp regeneration strategies frequently result in hard tissue formation and pulp obliteration. The aim of this study was to investigate whether dental pulp stem cells (DPSCs) can be directed toward soft tissue differentiation by extracellular elasticity. STRO-1-positive human dental pulp cells were magnetically enriched and cultured on substrates with elasticities of 1.5, 15, and 28 kPa. The morphology of DPSCs was assessed visually. Proteins relevant in mechanobiology ACTB, ITGB1, FAK, p-FAK, TALIN, VINCULIN, PAXILLIN, ERK 1/2, and p-ERK 1/2 were detected by immunofluorescence imaging. Transcription of the pulp marker genes BMP2, BMP4, MMP2, MMP3, MMP13, FN1, and IGF2 as well as the cytokines ANGPT1, VEGF, CCL2, TGFB1, IL2, ANG, and CSF1 was determined using qPCR. A low stiffness, i.e., 1.5 kPa, resulted in a soft tissue-like phenotype and gene expression, whereas DPSCs on 28 kPa substrates exhibited a differentiation signature resembling hard tissues with a low cytokine expression. Conversely, the highest cytokine expression was observed in cells cultured on intermediate elasticity, i.e., 15 kPa, substrates possibly allowing the cells to act as “trophic mediators”. Our observations highlight the impact of biophysical cues for DPSC fate and enable the design of scaffold materials for clinical pulp regeneration that prevent hard tissue formation.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Correspondence: ; Tel.: +49-(0)761-270-48850; Fax: +49-(0)761-270-47620
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs—University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Markus Joerg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
- Dental Clinic 1–Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glückstr. 11, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Reçica B, Bukleta D, Popovska M, Tefiku U, Ahmedi J, Stubljar D. Comparative analysis of the effect of 4MATRIX with and without PRF on regeneration of infrabony periodontal pockets. Saudi Dent J 2023; 35:244-250. [PMID: 37091276 PMCID: PMC10114591 DOI: 10.1016/j.sdentj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Aim The aim was to compare the effect in improvement of periodontal pocket depth (PPD) and clinical attachment level (CAL) between application of 4MATRIX and 4 MATRIX combined with PRF in advanced periodontal disease during follow-up of 6, 12 and 18 months. Methods Thirty patients of both genders aged 25-50 years were included. The patients were clinically and radiologically diagnosed with generalized advanced chronic periodontitis with the presence of periodontal pockets with a depth of ≥ 5 mm bilaterally in the upper jaw. Both sides were treated with a flap intervention in all patients. On one side a bone substitute 4MATRIX was applied, and the other side was treated with an application 4MATRIX and PRF. The clinical assessment and measurements were performed in four stages, immediately before the intervention, and then 6, 12 and 18 months after the intervention. PPD and CAL were determined in all four timepoints. Results PPD was the highest at zero time before the surgery for both groups and was 5.56 ± 0.28 mm. In the postoperative follow-up period, the PPD value decreased gradually with the lowest average value of 5.10 ± 0.18 mm after 18 months in Group I and 4.67 ± 0.13 mm in Group II (p < 0.001, respectively). Moreover, comparing the values of PPD at 6, 12 and 18 months after the surgery, a significant difference was found between the patients from the 4MATRIX vs 4MATRIX + PRF (p < 0.001 respectively). The postoperative follow-up period showed a decrease in CAL value with the lowest value after 18 months. A significant difference in CAL was found between the four measurement times (p < 0.001, respectively). The average level of CAL was the highest before surgical treatment in both groups. The intergroup analysis of CAL after 18 months in group I (4MATRIX) was 5.27 ± 0.17 mm and in group II 4.10 ± 0.14 mm (p < 0.001). Conclusion Treatment of adult patients with advanced chronic periodontitis with periodontal pockets of ≥ 5 mm bilaterally in the upper jaw using 4MATRIX and 4MATRIX + PRF showed improvement of PPD and lower CAL loss after 18 months of the treatment. In the group treated with 4MATRIX + PRF patients showed the highest improvement in PPD and CAL loss. The analysis of treatment with 4MATRIX and 4MATRIX + PRF showed the lowest values after 18 months of the treatment.
Collapse
Affiliation(s)
- Bylbyl Reçica
- Department of Oral Surgery, College of Medical Sciences Rezonanca, Prishtina, Republic of Kosovo
| | - Dashnor Bukleta
- Department of Oral Surgery, College of Medical Sciences Rezonanca, Prishtina, Republic of Kosovo
| | - Mirjana Popovska
- Department of Periodontology and Oral Pathology, University Dental Clinical Centre ”Ss. Cyril and Methodius University”, Skopje, The Former Yugolav Republic of Macedonia
| | - Urim Tefiku
- Dental Clinic DentaMed, Prishtina, Republic of Kosovo
| | - Jehona Ahmedi
- Department of Oral Surgery, Dental School, Faculty of Medicine, University of Prishtina, Republic of Kosovo
- Corresponding author.
| | | |
Collapse
|
4
|
Novel In Situ-Cross-Linked Electrospun Gelatin/Hydroxyapatite Nonwoven Scaffolds Prove Suitable for Periodontal Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061286. [PMID: 35745858 PMCID: PMC9230656 DOI: 10.3390/pharmaceutics14061286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases affect millions of people worldwide and can result in tooth loss. Regenerative treatment options for clinical use are thus needed. We aimed at developing new nonwoven-based scaffolds for periodontal tissue engineering. Nonwovens of 16% gelatin/5% hydroxyapatite were produced by electrospinning and in situ glyoxal cross-linking. In a subset of scaffolds, additional porosity was incorporated via extractable polyethylene glycol fibers. Cell colonization and penetration by human mesenchymal stem cells (hMSCs), periodontal ligament fibroblasts (PDLFs), or cocultures of both were visualized by scanning electron microscopy and 4′,6-diamidin-2-phenylindole (DAPI) staining. Metabolic activity was assessed via Alamar Blue® staining. Cell type and differentiation were analyzed by immunocytochemical staining of Oct4, osteopontin, and periostin. The electrospun nonwovens were efficiently populated by both hMSCs and PDLFs, while scaffolds with additional porosity harbored significantly more cells. The metabolic activity was higher for cocultures of hMSCs and PDLFs, or for PDLF-seeded scaffolds. Periostin and osteopontin expression was more pronounced in cocultures of hMSCs and PDLFs, whereas Oct4 staining was limited to hMSCs. These novel in situ-cross-linked electrospun nonwoven scaffolds allow for efficient adhesion and survival of hMSCs and PDLFs. Coordinated expression of differentiation markers was observed, which rendered this platform an interesting candidate for periodontal tissue engineering.
Collapse
|
5
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|
6
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Rigano A, Ehmsen S, Öztürk SU, Ryan J, Balashov A, Hammer M, Kirli K, Boehm U, Brown CM, Bellve K, Chambers JJ, Cosolo A, Coleman RA, Faklaris O, Fogarty KE, Guilbert T, Hamacher AB, Itano MS, Keeley DP, Kunis S, Lacoste J, Laude A, Ma WY, Marcello M, Montero-Llopis P, Nelson G, Nitschke R, Pimentel JA, Weidtkamp-Peters S, Park PJ, Alver BH, Grunwald D, Strambio-De-Castillia C. Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nat Methods 2021; 18:1489-1495. [PMID: 34862503 PMCID: PMC8648560 DOI: 10.1038/s41592-021-01315-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.
Collapse
Affiliation(s)
- Alessandro Rigano
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Shannon Ehmsen
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Serkan Utku Öztürk
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Joel Ryan
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Alexander Balashov
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Mathias Hammer
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | - Koray Kirli
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Ulrike Boehm
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Claire M. Brown
- grid.14709.3b0000 0004 1936 8649Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec Canada
| | - Karl Bellve
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - James J. Chambers
- grid.266683.f0000 0001 2166 5835Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA USA
| | - Andrea Cosolo
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Robert A. Coleman
- grid.251993.50000000121791997Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Orestis Faklaris
- grid.121334.60000 0001 2097 0141BioCampus Montpellier (BCM), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kevin E. Fogarty
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA USA
| | - Thomas Guilbert
- grid.508487.60000 0004 7885 7602Institut Cochin, Inserm U1016-CNRS UMR8104-Université de Paris, Paris, France
| | - Anna B. Hamacher
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Michelle S. Itano
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Daniel P. Keeley
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Department of Cell Biology and Physiology, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Susanne Kunis
- grid.10854.380000 0001 0672 4366Department of Biology/Chemistry and Center for Cellular Nanoanalytics, University Osnabrück, Osnabrück, Germany
| | | | - Alex Laude
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Willa Y. Ma
- grid.10698.360000000122483208UNC Neuroscience Microscopy Core Facility, Carolina Institute for Developmental Disabilities, and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC USA
| | - Marco Marcello
- grid.10025.360000 0004 1936 8470Center for Cell Imaging, University of Liverpool, Liverpool, UK
| | - Paula Montero-Llopis
- grid.38142.3c000000041936754XMicroscopy Resources of the North Quad, University of Harvard Medical School, Boston, MA USA
| | - Glyn Nelson
- grid.1006.70000 0001 0462 7212Bioimaging Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Roland Nitschke
- grid.5963.9Life Imaging Center and Signalling Research Centres CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| | - Jaime A. Pimentel
- grid.9486.30000 0001 2159 0001Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Stefanie Weidtkamp-Peters
- grid.411327.20000 0001 2176 9917Center for Advanced Imaging, Heinrich-Heine University Duesseldorf, Düsseldorf, Germany
| | - Peter J. Park
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - Burak H. Alver
- grid.38142.3c000000041936754XDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA USA
| | - David Grunwald
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA USA
| | | |
Collapse
|
8
|
Proksch S, Brossart J, Vach K, Hellwig E, Altenburger MJ, Karygianni L. Evaluation of the bioactivity of fluoride-enriched mineral trioxide aggregate on osteoblasts. Int Endod J 2018; 51:912-923. [PMID: 29397012 DOI: 10.1111/iej.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
AIM To investigate whether a combination of mineral trioxide aggregate (MTA) and fluoride compounds affects bone cells. METHODOLOGY Mineral trioxide aggregate (MTA) discs (ProRoot® , Dentsply Sirona, Ballaigues, Switzerland) with and without the addition of 0.1%, 0.25% and 0.5% sodium fluoride were characterized for their surface roughness by laser scanning microscopy and for the adhesion of human alveolar osteoblasts by scanning electron microscopy. Using eluates from fluoride-enriched MTA discs, the cell proliferation was measured by monitoring the DNA incorporation of 5-bromo-2'-deoxyuridine. Further, gene expression was evaluated by qPCR arrays, extracellular matrix mineralization was quantified by absorption measurement of Alizarin red stains, and effects were calculated with repeated measures analysis and post hoc P-value adjustment. RESULTS Irrespective of fluoride addition, cell adhesion was similar on MTA discs, of which the surface roughness was comparable. Control osteoblasts had a curvilinear proliferation pattern peaking at d5, which was levelled out by incubation with MTA. The addition of fluoride partly restored the MTA-related reduction in the cellular proliferation rate in a dose-dependent manner. At the mRNA level, both fluoride and MTA modulated a number of genes involved in osteogenesis, bone mineral metabolism and extracellular matrix formation. Although MTA significantly impaired extracellular matrix mineralization, the addition of fluoride supported the formation of mineralized nodules in a dose-dependent manner. CONCLUSION The addition of fluoride modulated the biocompatibility of MTA in terms of supporting bone cell proliferation and hard tissue formation. Hence, fluoride enrichment is a trend-setting advancement for MTA-based endodontic therapies.
Collapse
Affiliation(s)
- S Proksch
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - J Brossart
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - K Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - E Hellwig
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - M J Altenburger
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - L Karygianni
- Centre for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine, Medical Center - University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Rammal H, Dubus M, Aubert L, Reffuveille F, Laurent-Maquin D, Terryn C, Schaaf P, Alem H, Francius G, Quilès F, Gangloff SC, Boulmedais F, Kerdjoudj H. Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12791-12801. [PMID: 28301131 DOI: 10.1021/acsami.7b01665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone mimicking coatings provide a complex microenvironment in which material, through its inherent properties (such as nanostructure and composition), affects the commitment of stem cells into bone lineage and the production of bone tissue regulating factors required for bone healing and regeneration. Herein, a bioactive mineral/biopolymer composite made of calcium phosphate/chitosan and hyaluronic acid (CaP-CHI-HA) was elaborated using a versatile simultaneous spray coating of interacting species. The resulting CaP-CHI-HA coating was mainly constituted of bioactive, carbonated and crystalline hydroxyapatite with 277 ± 98 nm of roughness, 1 μm of thickness, and 2.3 ± 1 GPa of stiffness. After five days of culture, CaP-CHI-HA suggested a synergistic effect of intrinsic biophysical features and biopolymers on stem cell mechanobiology and nuclear organization, leading to the expression of an early osteoblast-like phenotype and the production of bone tissue regulating factors such as osteoprotegerin and vascular endothelial growth factor. More interestingly, amalgamation with biopolymers conferred to the mineral a bacterial antiadhesive property. These significant data shed light on the potential regenerative application of CaP-CHI-HA bioinspired coating in providing a suitable environment for stem cell bone regeneration and an ideal strategy to prevent implant-associated infections.
Collapse
Affiliation(s)
- H Rammal
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - M Dubus
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - L Aubert
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - F Reffuveille
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - D Laurent-Maquin
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - C Terryn
- Plateforme d'Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne Ardenne , 51100 Reims, France
| | - P Schaaf
- INSERM, UMR-S 1121, "Biomatériaux et Bioingénierie", Fédération de médecine translationnelle de Strasbourg, Faculté de Chirurgie Dentaire, Université de Strasbourg , 67000 Strasbourg, France
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Alem
- CNRS, UMR 7198, Institut Jean Lamour (IJL), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - G Francius
- CNRS, UMR 7564, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - F Quilès
- CNRS, UMR 7564, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), Université de Lorraine , 54500 Vandoeuvre Lès Nancy, France
| | - S C Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne , 51100 Reims, France
| | - F Boulmedais
- CNRS, Institut Charles Sadron UPR 22, Université de Strasbourg , 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Kerdjoudj
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne , 51100 Reims, France
- UFR d'Odontologie, Université de Reims Champagne Ardenne , 51100 Reims, France
| |
Collapse
|
10
|
Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One 2017; 12:e0171857. [PMID: 28199362 PMCID: PMC5310897 DOI: 10.1371/journal.pone.0171857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the important role of mechanical signals in bone remodeling, relatively little is known about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast migration behavior was prominent only during the initial period after the onset of the steady flow (for about 30 min), exhibiting shear stress-dependent migration speed, displacement, arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest coefficient (measuring how often cells are paused during migration) assessed for the first 30 min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this initial period, osteoblasts under steady flow showed decreased migration capacity and diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK), a regulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direction and continued shear sensitivity, resulting in greater root mean square displacement at the end of 120 min of measurement. It is notable that the transient osteoblast migration behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351). The study of fluid shear as a driving force for cell migration, i.e., "flowtaxis", and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis.
Collapse
Affiliation(s)
- Brandon D. Riehl
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Jeong Soon Lee
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Ligyeom Ha
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Il Keun Kwon
- The Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- The Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
- * E-mail:
| |
Collapse
|