1
|
Elmadbouh I. Generation of muscle progenitors from human-induced pluripotent stem cells. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Small molecules have a role in the differentiation of human-induced pluripotent stem cells (hiPSCs) into different cell linages. The aim of this study was to evaluate the differentiation of hiPSCs into cardiac or skeletal myogenic progenitors with a single small molecule.
Methods
hiPSCs were treated with three different small molecules such as Isoxazole-9, Danazol and Givinostat in serum-free medium for 7 days. Cell viability, qRT-PCR, western blots, and immunostaining were assessed after treatment of hiPSCs with small molecules.
Results
Higher hiPSC viability was observed in hiPSCs treated with Isoxazole-9 (25 µM), Danazol (25 µM) and Givinostat (150 nM) versus control (P < 0.05). Givinostat had dual effect by generating both skeletal and cardiac progenitor cells versus Isoxazole-9 and Danazol after 7 days. Givinostat treatment induced upregulation of skeletal myogenic genes and their protein expression levels on day 4 and further increased on day 8 (P < 0.05) versus control. Furthermore,positive stained cells for Pax3, Myf5, MyoD1, dystrophin, desmin, myogenin, and β-catenin at 1 month. Givinostat increased upregulation of cardiac gene expression levels versus control after day 4 (P < 0.05), with positive stained cells for Nkx2.5, GATA4, TnT, TnI, connexin 43 and α-sarcomeric actinin at 1 month.
Conclusions
Pretreatment of hiPSCs with Givinostat represents a viable strategy for producing both cardiac/skeletal myogenic progenitors in vitro for cell therapies against myocardial infarction and Duchenne muscular dystrophy.
Collapse
|
2
|
Lee KY, Loh HX, Wan ACA. Systems for Muscle Cell Differentiation: From Bioengineering to Future Food. MICROMACHINES 2021; 13:71. [PMID: 35056236 PMCID: PMC8777594 DOI: 10.3390/mi13010071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.
Collapse
Affiliation(s)
| | | | - Andrew C. A. Wan
- Singapore Institute of Food and Biotechnology Innovation, 31 Biopolis Way, #01-02, Nanos, Singapore 138669, Singapore; (K.-Y.L.); (H.-X.L.)
| |
Collapse
|
3
|
Qin J, Sun Y, Liu S, Zhao R, Zhang Q, Pang W. MicroRNA-323-3p promotes myogenesis by targeting Smad2. J Cell Biochem 2019; 120:18751-18761. [PMID: 31218742 DOI: 10.1002/jcb.29187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/28/2019] [Indexed: 11/12/2022]
Abstract
Skeletal muscle is an important and complex organ with multiple biological functions in humans and animals. Proliferation and differentiation of myoblasts are the key steps during the development of skeletal muscle. MicroRNA (miRNA) is a class of 21-nucleotide noncoding RNAs regulating gene expression by combining with the 3'-untranslated region of target messenger RNA. Many studies in recent years have suggested that miRNAs play a critical role in myogenesis. Through high-throughput sequencing, we found that miR-323-3p showed significant changes in the longissimus dorsi muscle of Rongchang pigs in different age groups. In this study, we discovered that overexpression of miR-323-3p repressed myoblast proliferation and promoted differentiation, whereas the inhibitor of miR-323-3p displayed the opposite results. Furthermore, we predicted Smad2 as the target gene of miR-323-3p and found that miR-323-3p directly modulated the expression level of Smad2. Then luciferase reporter assays verified that Smad2 was a target gene of miR-323-3p during the differentiation of myoblasts. These findings reveal that miR-323-3p is a positive regulator of myogenesis by targeting Smad2. This provides a novel mechanism of miRNAs in myogenesis.
Collapse
Affiliation(s)
- Jin Qin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuge Liu
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Zhao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiyue Zhang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Raasch M, Fritsche E, Kurtz A, Bauer M, Mosig AS. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 2019; 140:51-67. [PMID: 29908880 DOI: 10.1016/j.addr.2018.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
Complex cell culture models such as microphysiological models (MPS) mimicking human liver functionality in vitro are in the spotlight as alternative to conventional cell culture and animal models. Promising techniques like microfluidic cell culture or micropatterning by 3D bioprinting are gaining increasing importance for the development of MPS to address the needs for more predictivity and cost efficiency. In this context, human induced pluripotent stem cells (hiPSCs) offer new perspectives for the development of advanced liver-on-chip systems by recreating an in vivo like microenvironment that supports the reliable differentiation of hiPSCs to hepatocyte-like cells (HLC). In this review we will summarize current protocols of HLC generation and highlight recently established MPS suitable to resemble physiological hepatocyte function in vitro. In addition, we are discussing potential applications of liver MPS for disease modeling related to systemic or direct liver infections and the use of MPS in testing of new drug candidates.
Collapse
|
6
|
Abstract
Wnt/β-catenin signaling pathway is essential for embryo development and adult tissue homeostasis and regeneration, abnormal regulation of the pathway is tightly associated with many disease types, suggesting that Wnt/β-catenin signaling pathway is an attractive target for disease therapy. While the Wnt inhibitors have been extensively reviewed, small molecules activating Wnt/β-catenin signaling were rarely addressed. In this article, we firstly reviewed the diseases that were associated with disruption of Wnt/β-catenin signaling pathway, including hair loss, pigmentary disorders, wound healing, bone diseases, neurodegenerative diseases and chronic obstructive pulmonary diseases, etc. We also comprehensively summarized small molecules that activated Wnt/β-catenin signaling pathway in various models in vitro and in vivo. To evaluate the therapeutic potential of Wnt activation, we focused on the discovery strategies, phenotypic characterization, and target identification of the Wnt activators. Finally, we proposed the challenges and opportunities in development of Wnt activators for pharmacological agents in term of targeting safety and selectivity.
Collapse
|
7
|
Wei ZZ, Zhu YB, Zhang JY, McCrary MR, Wang S, Zhang YB, Yu SP, Wei L. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy. Chin Med J (Engl) 2018; 130:2361-2374. [PMID: 28937044 PMCID: PMC5634089 DOI: 10.4103/0366-6999.215324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: “stem cells,” “hypoxic preconditioning,” “ischemic preconditioning,” and “cell transplantation.” Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.
Collapse
Affiliation(s)
- Zheng Z Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yan-Bing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - James Y Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Myles R McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Song Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shan-Ping Yu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches. Stem Cells Int 2018; 2018:6241681. [PMID: 29760730 PMCID: PMC5924987 DOI: 10.1155/2018/6241681] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular diseases are caused by functional defects of skeletal muscles, directly via muscle pathology or indirectly via disruption of the nervous system. Extensive studies have been performed to improve the outcomes of therapies; however, effective treatment strategies have not been fully established for any major neuromuscular disease. Human pluripotent stem cells have a great capacity to differentiate into myogenic progenitors and skeletal myocytes for use in treating and modeling neuromuscular diseases. Recent advances have allowed the creation of patient-derived stem cells, which can be used as a unique platform for comprehensive study of disease mechanisms, in vitro drug screening, and potential new cell-based therapies. In the last decade, a number of methods have been developed to derive skeletal muscle cells from human pluripotent stem cells. By controlling the process of myogenesis using transcription factors and signaling molecules, human pluripotent stem cells can be directed to differentiate into cell types observed during muscle development. In this review, we highlight signaling pathways relevant to the formation of muscle tissue during embryonic development. We then summarize current methods to differentiate human pluripotent stem cells toward the myogenic lineage, specifically focusing on transgene-free approaches. Lastly, we discuss existing challenges for deriving skeletal myocytes and myogenic progenitors from human pluripotent stem cells.
Collapse
|
9
|
Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier JM, Kennedy L, Knockaert M, Gayraud-Morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018; 145:145/6/dev157339. [DOI: 10.1242/dev.157339] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden 67400, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Marie Knockaert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
10
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Lin X, Dong R, Diao S, Yu G, Wang L, Li J, Fan Z. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biol Int 2017; 41:534-543. [PMID: 28244619 DOI: 10.1002/cbin.10757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 02/24/2017] [Indexed: 01/04/2023]
Abstract
Dental tissue-derived mesenchymal stem cells (MSCs) are easily obtained and considered as a favorable cell source for tissue engineering, but the regulation of direct differentiation is unknown, which restricts their application. The present study investigated the effect of SFRP2, a Wnt signaling modulator, on MSC differentiation using stem cells from apical papilla (SCAPs). The cells were cultured in specific inducing medium for adipogenic, neurogenic, or chondrogenic differentiation. Over-expression of SFRP2 via retroviral infection enhanced the adipogenic and neurogenic differentiation of SCAPs. While inhibit of Wnt pathway by IWR1-endo could enhance the neurogenic differentiation potentials of SCAPs, similar with the function of SFRP2. In addition, over-expression of SFRP2 up-regulated the expression of stemness-related genes SOX2 and OCT4. Furthermore, SOX2 and OCT4 expression was significantly inhibited after lentiviral silencing of SFRP2 in SCAPs. Therefore, our results suggest that SFRP2 enhances the adipogenic and neurogenic differentiation potentials of SCAPs by up-regulating SOX2 and OCT4. Moreover, the effect of SFRP2 in neurogenic differentiation of SCAPs maybe also associated with Wnt inhibition. Our results provided useful information about the molecular mechanism underlying directed differentiation in dental tissue-derived MSCs.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatric Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Guoxia Yu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Stomatology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Implant Dentistry, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
12
|
Wang Q, Song JW, Liu Y, Zhao XX. Involvement of Wnt pathway in ethanol-induced inhibition of mouse embryonic stem cell differentiation. Alcohol 2017; 58:13-18. [PMID: 28109343 DOI: 10.1016/j.alcohol.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Abstract
Ethanol has been reported to have toxicity on embryonic stem cells (ESCs). The present study aims to address the teratogenic effects of ethanol on the growth and cardiac differentiation of ESCs. Mouse embryonic stem D3 cells were employed. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were used to determine cytotoxicity. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze the expressions of cardiac differentiation-related and Wnt signaling factors. The beating profile of cardiomyocytes was recorded to assess cardiac differentiation. Ethanol induced growth inhibition in both undifferentiated and differentiated ESCs after 5 days of exposure. Ethanol inhibited the loss of pluripotent gene expressions including Nanog, Sox2 and Oct4. The expressions of cardiac markers, Nkx2.5, Mef2c, Tbx5, dHand, αMHC, Cx43 and troponin C1, were suppressed by ethanol treatment. Furthermore, ethanol delayed cardiac differentiation of ESCs till 11 days of differentiation. The expressions of Wnt-related regulators, β-catenin and its target cyclin D1, were downregulated by ethanol. Wnt pathway agonist wnt3a could greatly rescue ethanol-induced inhibition of cardiac differentiation and Wnt-pathway-related protein expressions. These finding suggested that ethanol suppresses mouse ESC differentiation largely by inhibiting Wnt signaling pathway.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China
| | - Yang Liu
- The Institute of Health Science, Shanghai JiaoTong University School of Medicine, 320 YueYang Road, Shanghai 200031, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, 168 ChangHai Road, Shanghai 200433, China.
| |
Collapse
|