1
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
3
|
Hadland B, Varnum-Finney B, Dozono S, Dignum T, Nourigat-McKay C, Heck AM, Ishida T, Jackson DL, Itkin T, Butler JM, Rafii S, Trapnell C, Bernstein ID. Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics. Nat Commun 2022; 13:1584. [PMID: 35332125 PMCID: PMC8948249 DOI: 10.1038/s41467-022-28781-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/09/2022] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop from hemogenic endothelium within embryonic arterial vessels such as the aorta of the aorta-gonad-mesonephros region (AGM). To identify the signals responsible for HSC formation, here we use single cell RNA-sequencing to simultaneously analyze the transcriptional profiles of AGM-derived cells transitioning from hemogenic endothelium to HSCs, and AGM-derived endothelial cells which provide signals sufficient to support HSC maturation and self-renewal. Pseudotemporal ordering reveals dynamics of gene expression during the hemogenic endothelium to HSC transition, identifying surface receptors specifically expressed on developing HSCs. Transcriptional profiling of niche endothelial cells identifies corresponding ligands, including those signaling to Notch receptors, VLA-4 integrin, and CXCR4, which, when integrated in an engineered platform, are sufficient to support the generation of engrafting HSCs. These studies provide a transcriptional map of the signaling interactions necessary for the development of HSCs and advance the goal of engineering HSCs for therapeutic applications.
Collapse
Affiliation(s)
- Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98105, USA.
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Stacey Dozono
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Tessa Dignum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Cynthia Nourigat-McKay
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Adam M Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98105, USA
| | - Tomer Itkin
- Department of Genetic Medicine, Ansary Stem Cell Institute, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Ansary Stem Cell Institute, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98105, USA
| | - Irwin D Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98105, USA
| |
Collapse
|
4
|
Shan W, Yu Q, Long Y, Luo Q, Li H, Han Y, Xu Y, Fu S, Zeng X, Wei C, Gao Y, Li X, Li X, Zhang L, Liu L, Chen M, Qian P, Huang H. Enhanced HSC-like cell generation from mouse pluripotent stem cells in a 3D induction system cocultured with stromal cells. Stem Cell Res Ther 2021; 12:353. [PMID: 34147128 PMCID: PMC8214308 DOI: 10.1186/s13287-021-02434-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decades of efforts have attempted to differentiate the pluripotent stem cells (PSCs) into truly functional hematopoietic stem cells (HSCs), yet the problems of low differentiation efficiency in vitro and poor hematopoiesis reconstitution in vivo still exist, mainly attributing to the lack of solid, reproduced, or pursued differentiation system. METHODS In this study, we established an in vitro differentiation system yielding in vivo hematopoietic reconstitution hematopoietic cells from mouse PSCs through a 3D induction system followed by coculture with OP9 stromal cells. The in vivo hematopoietic reconstitution potential of c-kit+ cells derived from the mouse PSCs was evaluated via m-NSG transplantation assay. Flow cytometry analysis, RNA-seq, and cell cycle analysis were used to detect the in vitro hematopoietic ability of endothelial protein C receptor (EPCR, CD201) cells generated in our induction system. RESULTS The c-kit+ cells from 3D self-assembling peptide induction system followed by the OP9 coculture system possessed apparently superiority in terms of in vivo repopulating activity than that of 3D induction system followed by the 0.1% gelatin culture. We interestingly found that our 3D+OP9 system enriched a higher percentage of CD201+c-kit+cells that showed more similar HSC-like features such as transcriptome level and CFU formation ability than CD201-c-kit+cells, which have not been reported in the field of mouse PSCs hematopoietic differentiation. Moreover, CD201+ hematopoietic cells remained in a relatively slow cycling state, consistent with high expression levels of P57 and Ccng2. Further, we innovatively demonstrated that notch signaling pathway is responsible for in vitro CD201+ hematopoietic cell induction from mouse PSCs. CONCLUSIONS Altogether, our findings lay a foundation for improving the efficiency of hematopoietic differentiation and generating in vivo functional HSC-like cells from mouse PSCs for clinical application.
Collapse
Affiliation(s)
- Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yan Long
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Honghu Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Cong Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016, Zhejiang, PR China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016, Zhejiang, PR China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Ming Chen
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China. .,Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, PR China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| |
Collapse
|