1
|
Nasiri B, Das A, Ramachandran K, Bhamidipati SH, Wu Y, Venkatesan S, Gunawan R, Swartz DD, Andreadis ST. Immune-mediated regeneration of cell-free vascular grafts in an ovine model. NPJ Regen Med 2025; 10:13. [PMID: 40108187 PMCID: PMC11923281 DOI: 10.1038/s41536-025-00400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
We developed acellular tissue engineered vessels (ATEV) using small intestine submucosa (SIS) incorporating heparin and a novel protein named H2R5. ATEVs were implanted into the arterial circulation of an ovine animal model, demonstrating high primary patency rates over a period of three months. Implanted grafts were infiltrated by host cells, the majority of which were monocytes/macrophages (MC/MΦ), as demonstrated by scRNA sequencing and immunostaining. They also developed functional endothelial and medial layers that deposited new extracellular matrix leading to matrix remodeling and acquisition of mechanical properties that were similar to those of native arteries. Notably, during this short implantation time, ATEVs turned into functional neo-arteries, as evidenced by the development of the vascular contractile function. Our findings underscore the potential of H2R5-functionalized ATEVs as promising candidates for tissue replacement grafts in a large pre-clinical animal model and highlight the contribution of macrophages in vascular regeneration.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Karthik Ramachandran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Sai Harsha Bhamidipati
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shriramprasad Venkatesan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY, USA
| | | | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY, USA.
- Angiograft LLC, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
| |
Collapse
|
2
|
Eom YS, Kim SJ. Regulatory dynamics of Nanog in chondrocyte dedifferentiation: role of KLF4/p53 and p38/AKT signaling. Funct Integr Genomics 2025; 25:58. [PMID: 40067510 DOI: 10.1007/s10142-025-01572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 05/13/2025]
Abstract
Homeobox protein Nanog, a member of the transcription factor family, plays a crucial role in maintaining the pluripotency and self-renewal of embryonic stem cells. Due to its diverse activities, Nanog has been identified in multiple cell types, including embryonic stem cells (ESCs) and cancer stem cells (CSCs). However, its molecular mechanism in chondrocytes remains unclear. In this study, we explored the effects of Nanog on chondrocytes and its interaction with chondrocyte-specific proteins. Chondrocytes were transfected with a Nanog cDNA vector, resulting in reduced expression of the chondrogenic markers Type II collagen and SOX9, as confirmed by western blot, RT-PCR, and immunofluorescence. Following siRNA transfection, the dedifferentiation effect of Nanog was reversed, restoring Type II collagen and SOX9 expression. We also discovered that the mechanism by which Nanog affects chondrocytes is closely linked to p53 and KLF4. Overexpression of KLF4 induced the phosphorylation of p53, and phospho-p53 directly inhibited Nanog expression. Moreover, the p53 activator Nutlin-3 A accelerated Nanog degradation, while the p53 inhibitor Pifithrin-α stabilized Nanog. Stabilized Nanog continued to promote chondrocyte dedifferentiation. Additional experiments were performed to identify the signaling pathways involved in Nanog-induced chondrocyte dedifferentiation. Our results showed that Nanog overexpression in chondrocytes significantly impacted the p38 kinase and AKT signaling pathways. Inhibition of p38 and AKT with SB203580 and LY294002 reduced Nanog expression and partially restored Type II collagen levels. Conversely, activation with anisomycin(ANS) and 740 Y-P enhanced Nanog expression, further reducing Type II collagen levels. To investigate Nanog's role in early development in vivo, we injected Nanog expression vectors into zebrafish embryos. The injected zebrafish exhibited structural defects in craniofacial cartilage, confirming Nanog's involvement in chondrocyte differentiation. These findings suggest that Nanog induces chondrocyte dedifferentiation, and this process can be modulated via the p53/KLF4 and p38/AKT pathways.
Collapse
Affiliation(s)
- Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588, Republic of Korea.
| |
Collapse
|
3
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Hemmati F, Akinpelu A, Nweze DC, Mistriotis P. 3D confinement alters smooth muscle cell responses to chemical and mechanical cues. APL Bioeng 2024; 8:046103. [PMID: 39464377 PMCID: PMC11512639 DOI: 10.1063/5.0225569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic switching is a hallmark of many vascular diseases. Although prior work has established that chemical and mechanical cues contribute to SMC phenotypic switching, the impact of three-dimensional (3D) confinement on this process remains elusive. Yet, in vivo, arterial SMCs reside within confined environments. In this study, we designed a microfluidic assay to investigate the interplay between 3D confinement and different environmental stimuli in SMC function. Our results show that tightly, but not moderately, confined SMCs acquire a contractile phenotype when exposed to collagen I. Elevated compressive forces induced by hydrostatic pressure abolish this upregulation of the contractile phenotype and compromise SMC survival, particularly in tightly confined spaces. Transforming growth factor beta 1, which promotes the contractile state in moderate confinement, fails to enhance the contractility of tightly confined cells. Fibronectin and engagement of cadherin 2 suppress the contractile phenotype of SMCs regardless of the degree of confinement. In contrast, homophilic engagement of cadherin 11 upregulates SMC-specific genes and enhances contractility in both moderately and tightly confined cells. Overall, our work introduces 3D confinement as a regulator of SMC phenotypic responses to chemical and mechanical signals.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Ayuba Akinpelu
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | - Daniel Chinedu Nweze
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
5
|
Amiri F, Mistriotis P. Leveraging Cell Migration Dynamics to Discriminate Between Senescent and Presenescent Human Mesenchymal Stem Cells. Cell Mol Bioeng 2024; 17:385-399. [PMID: 39513008 PMCID: PMC11538215 DOI: 10.1007/s12195-024-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity. Current methodologies to eradicate senescent hMSCs have either shown limited success or lack clinical relevance. This study leverages the inherent capacity of hMSCs to migrate toward damaged tissues as a means to discern senescent from presenescent stem cells. Given the established deficiency of senescent cells to migrate through physiologically relevant environments, we hypothesized that a microfluidic device, designed to emulate key facets of in vivo cell motility, could serve as a platform for identifying presenescent cells. Methods We employed a Y-shaped microchannel assay, which allows fine-tuning of fluid flow rates and the degree of confinement. Results Highly migratory hMSCs detected by the device not only demonstrate increased speed, smaller size, and higher proliferative capacity but also manifest reduced DNA damage and senescence compared to non-migratory cells. Additionally, this assay detects presenescent cells in experiments with mixed early and late passage cells. The introduction of fluid flow through the device can further increase the fraction of highly motile stem cells, improving the assay's effectiveness to remove senescent hMSCs. Conclusions Collectively, this assay facilitates the detection and isolation of a highly potent stem cell subpopulation. Given the positive correlation between the migratory potential of administered MSCs and the long-term clinical outcome, delivering homogeneous, highly motile presenescent hMSCs may benefit patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00807-0.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | | |
Collapse
|
6
|
Farladansky-Gershnabel S, Silber M, Biron-Shental T, Kovo M, Kidron D, Weisz A, Zitman-Gal T. Is the Transcription Factor NANOG Involved in Placental Aging? Am J Reprod Immunol 2024; 92:e13927. [PMID: 39302196 DOI: 10.1111/aji.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
PROBLEM Accelerated placental aging is linked to abnormal fetal growth, preeclampsia (PE), and preterm birth (PTB). NANOG, a transcription factor, is known for its role in cellular reprogramming, self-renewal, and clonogenic growth. Its expression is regulated by Kruppel-like factor 4 (KLF4), which functions as both a transcriptional activator and repressor. This study evaluated the KLF4-NANOG pathway in placental samples from normal pregnancies (NP) as well as those with PE, fetal growth restriction (FGR), and PTB. METHOD OF STUDY Placental samples from NP pregnancies and those with PE, FGR, and PTB were analyzed for NANOG and KLF4 expression using western blotting and immunohistochemistry. RESULTS NANOG protein expression was significantly increased in placentas from PE, FGR, and PTB compared to NP (fold changes vs. NP: PE 2.48 ± 0.3, p = 0.002; FGR 1.64 ± 0.16, p = 0.03; PTB 6.03 ± 3.35, p = 0.01). Similarly, KLF4 protein expression was elevated in PE, FGR, and PTB placentas compared to NP (fold changes vs. NP: PE 5.78 ± 0.73, p = 0.001; FGR 2.61 ± 0.43, p = 0.02; PTB 11.42 ± 2.76, p = 0.0006). Immunohistochemistry revealed strong NANOG staining in the syncytiotrophoblast tissue of PE, FGR, and PTB samples, especially in extravillous trophoblasts, compared to NP placentas. CONCLUSIONS The elevated expression of NANOG and KLF4 in abnormal placental tissues suggests their potential role as markers of enhanced placental aging and dysfunction. These findings underscore the importance of the KLF4-NANOG pathway in the pathology of PE, FGR, and PTB, providing a basis for future research into therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Sivan Farladansky-Gershnabel
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Silber
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Debora Kidron
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Tali Zitman-Gal
- Faculty of Medicine & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
7
|
Starich B, Yang F, Tanrioven D, Kung HC, Baek J, Nair PR, Kamat P, Macaluso N, Eoh J, Han KS, Gu L, Walston J, Sun S, Wu PH, Wirtz D, Phillip JM. Substrate stiffness modulates the emergence and magnitude of senescence phenotypes in dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579151. [PMID: 38370721 PMCID: PMC10871290 DOI: 10.1101/2024.02.06.579151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cellular senescence is a major driver of aging and disease. Here we show that substrate stiffness modulates the emergence and magnitude of senescence phenotypes after exposure to senescence inducers. Using a primary dermal fibroblast model, we show that decreased substrate stiffness accelerates senescence-associated cell-cycle arrest and regulates the expression of conventional protein-based biomarkers of senescence. We found that the expression of these senescence biomarkers, namely p21WAF1/CIP1 and p16INK4a are mechanosensitive and are in-part regulated by myosin contractility through focal adhesion kinase (FAK)-ROCK signaling. Interestingly, at the protein level senescence-induced dermal fibroblasts on soft substrates (0.5 kPa) do not express p21WAF1/CIP1 and p16INK4a at comparable levels to induced cells on stiff substrates (4GPa). However, cells express CDKN1a, CDKN2a, and IL6 at the RNA level across both stiff and soft substrates. Moreover, when cells are transferred from soft to stiff substrates, senescent cells recover an elevated expression of p21WAF1/CIP1 and p16INK4a at levels comparable to senescence cells on stiff substrates, pointing to a mechanosensitive regulation of the senescence phenotype. Together, our results indicate that the emergent senescence phenotype depends critically on the local mechanical environments of cells and that senescent cells actively respond to changing mechanical cues.
Collapse
|
8
|
Choudhury D, Rong N, Senthil Kumar HV, Swedick S, Samuel RZ, Mehrotra P, Toftegaard J, Rajabian N, Thiyagarajan R, Podder AK, Wu Y, Shahini S, Seldeen KL, Troen B, Lei P, Andreadis ST. Proline restores mitochondrial function and reverses aging hallmarks in senescent cells. Cell Rep 2024; 43:113738. [PMID: 38354087 DOI: 10.1016/j.celrep.2024.113738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated β-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.
Collapse
Affiliation(s)
- Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Sydney Swedick
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ronel Z Samuel
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - John Toftegaard
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Ramkumar Thiyagarajan
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Ashis K Podder
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Kenneth L Seldeen
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Bruce Troen
- Department of Medicine, Division of Geriatrics and Palliative Medicine, Buffalo, NY 14203, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14263, USA; Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
9
|
Hemmati F, Akinpelu A, Song J, Amiri F, McDaniel A, McMurray C, Afthinos A, Andreadis ST, Aitken AV, Biancardi VC, Gerecht S, Mistriotis P. Downregulation of YAP Activity Restricts P53 Hyperactivation to Promote Cell Survival in Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302228. [PMID: 37267923 PMCID: PMC10427377 DOI: 10.1002/advs.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 06/04/2023]
Abstract
Cell migration through confining three dimensional (3D) topographies can lead to loss of nuclear envelope integrity, DNA damage, and genomic instability. Despite these detrimental phenomena, cells transiently exposed to confinement do not usually die. Whether this is also true for cells subjected to long-term confinement remains unclear at present. To investigate this, photopatterning and microfluidics are employed to fabricate a high-throughput device that circumvents limitations of previous cell confinement models and enables prolonged culture of single cells in microchannels with physiologically relevant length scales. The results of this study show that continuous exposure to tight confinement can trigger frequent nuclear envelope rupture events, which in turn promote P53 activation and cell apoptosis. Migrating cells eventually adapt to confinement and evade cell death by downregulating YAP activity. Reduced YAP activity, which is the consequence of confinement-induced YAP1/2 translocation to the cytoplasm, suppresses the incidence of nuclear envelope rupture and abolishes P53-mediated cell death. Cumulatively, this work establishes advanced, high-throughput biomimetic models for better understanding cell behavior in health and disease, and underscores the critical role of topographical cues and mechanotransduction pathways in the regulation of cell life and death.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Ayuba Akinpelu
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Farshad Amiri
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Anya McDaniel
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Collins McMurray
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | | | - Stelios T. Andreadis
- Departments of Chemical and Biological EngineeringThe State University of New YorkBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14228USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
- Center for Cell Gene and Tissue Engineering (CGTE)University at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Andrew V. Aitken
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Vinicia C. Biancardi
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | |
Collapse
|
10
|
Khalifa MO, Moriwaki T, Zhang S, Zhou W, Ito K, Li TS. Negative pressure induces dedifferentiation of hepatocytes via RhoA/ROCK pathway. Biochem Biophys Res Commun 2023; 667:104-110. [PMID: 37210870 DOI: 10.1016/j.bbrc.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Biomechanical forces are known to regulate the biological behaviors of cells. Although negative pressure has been used for wound healing, it is still unknown about its role in regulating cell plasticity. We investigated whether negative pressure could induce the dedifferentiation of hepatocytes. Using a commercial device, we found that the exposure of primary human hepatocytes to -50 mmHg quickly induced the formation of stress fibers and obviously changed cell morphology in 72 h. Moreover, the exposure of hepatocytes to -50 mmHg significantly upregulated RhoA, ROCK1, and ROCK2 in 1-6 h, and dramatically enhanced the expression of marker molecules on "stemness", such as OCT4, SOX2, KLF4, MYC, NANOG, and CD133 in 6-72 h. However, all these changes in hepatocytes induced by -50 mmHg stimulation were almost abrogated by ROCK inhibitor Y27623. Our data suggest that an appropriate force of negative pressure stimulation can effectively induce the dedifferentiation of hepatocytes via RhoA/ROCK pathway activation.
Collapse
Affiliation(s)
- Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Anatomy and Embryology, Veterinary Medicine, Aswan University, Aswan, Egypt; Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takahito Moriwaki
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Wei Zhou
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital Nanchang, Jiangxi Province, China
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
11
|
Choudhury D, Rong N, Ikhapoh I, Rajabian N, Tseropoulos G, Wu Y, Mehrotra P, Thiyagarajan R, Shahini A, Seldeen KL, Troen B, Lei P, Andreadis ST. Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep 2022; 41:111744. [PMID: 36450260 PMCID: PMC9809151 DOI: 10.1016/j.celrep.2022.111744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction, a hallmark of aging, has been associated with the onset of aging phenotypes and age-related diseases. Here, we report that impaired mitochondrial function is associated with increased glutamine catabolism in senescent human mesenchymal stem cells (MSCs) and myofibroblasts derived from patients suffering from Hutchinson-Gilford progeria syndrome. Increased glutaminase (GLS1) activity accompanied by loss of urea transporter SLC14A1 induces urea accumulation, mitochondrial dysfunction, and DNA damage. Conversely, blocking GLS1 activity restores mitochondrial function and leads to amelioration of aging hallmarks. Interestingly, GLS1 expression is regulated through the JNK pathway, as demonstrated by chemical and genetic inhibition. In agreement with our in vitro findings, tissues isolated from aged or progeria mice display increased urea accumulation and GLS1 activity, concomitant with declined mitochondrial function. Inhibition of glutaminolysis in progeria mice improves mitochondrial respiratory chain activity, suggesting that targeting glutaminolysis may be a promising strategy for restoring age-associated loss of mitochondrial function.
Collapse
Affiliation(s)
- Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Yulun Wu
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Ramkumar Thiyagarajan
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Kenneth L. Seldeen
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Bruce Troen
- Department of Medicine, Division of Geriatrics and Palliative medicine, Buffalo, NY 14203
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14263,Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, Buffalo, NY 14260,Address for all Correspondence: Stelios T. Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, Center for Cell, Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822,
| |
Collapse
|
12
|
Ding Q, Wang GJ, Xue LF, Yue J, Xu YX, Fu ZZ, Xiao WL. p38MAPK silencing attenuates scar proliferation after cleft palate repair surgery in rats via MRTF-A/SRF pathway. Exp Cell Res 2022; 417:113248. [PMID: 35690133 DOI: 10.1016/j.yexcr.2022.113248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Scarring is the primary factor of maxilla growth restriction among people who have undergone cleft palate repair surgery. p38 mitogen-activated protein kinase (p38MAPK) promotes fibrosis in a variety of organs. However, its role in post-surgery scarring on the hard palate has not been fully understood. This study is designed to investigate the role of p38MAPK in scar formation and maxilla growth of rats. We removed the mucosa on the hard palate of rats and applied the p38MAPK silencing adenovirus vector on it two weeks after surgery. Then the scarring tissue and maxilla growth were evaluated by histological and morphological examination. The effect of p38MAPK silencing on scarring-related genes in fibroblasts was also studied. We found that local injection of Ad-p38MAPK-1 in vivo effectively reduces the expression of p38MAPK and scarring-related proteins and weakens the impact of scarring on the width of the hard palate. Mechanistically, p38MAPK silencing inhibits the expression of α-smooth muscle actin (α-SMA) via mediating the production and nuclear localization of myocardin-related transcription factor A (MRTF-A) in fibroblasts. These results reveal a molecular pathway of scar formation involving p38MAPK/MRTF-A stimulation and support targeting p38MAPK as a potentially effective treatment for post-surgery scarring on the hard palate.
Collapse
Affiliation(s)
- Qian Ding
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Gong-Jun Wang
- Department of Radiology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Ling-Fa Xue
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jin Yue
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yao-Xiang Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhen-Zhen Fu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Wen-Lin Xiao
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
13
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
15
|
Du F, Qi X, Zhang A, Sui F, Wang X, Proud CG, Lin C, Fan X, Li J. MRTF-A-NF-κB/p65 axis-mediated PDL1 transcription and expression contributes to immune evasion of non-small-cell lung cancer via TGF-β. Exp Mol Med 2021; 53:1366-1378. [PMID: 34548615 PMCID: PMC8492728 DOI: 10.1038/s12276-021-00670-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022] Open
Abstract
PD-L1 is abnormally regulated in many cancers and is critical for immune escape. Fully understanding the regulation of PD-L1 expression is vital for improving the clinical efficacy of relevant anticancer agents. TGF-β plays an important role in the low reactivity of PD-1/PD-L1 antibody immunotherapy. However, it is not very clear whether and how TGF-β affects PD-L1 expression. In the present study, we show that TGF-β upregulates the expression of the transcriptional coactivator MRTF-A in non-small-cell lung cancer cells, which subsequently interacts with NF-κB/p65 rather than SRF to facilitate the binding of NF-κB/p65 to the PDL1 promoter, thereby activating the transcription and expression of PD-L1. This leads to the immune escape of NSCLC cells. This process is dependent on the activation of the TGF-β signaling pathway. In vivo, inhibition of MRTF-A effectively suppresses the growth of lung tumor syngrafts with enrichment of NK and T cells in tumor tissue. Our study defines a new signaling pathway that regulates the transcription and expression of PD-L1 upon TGF-β treatment, which may have a significant impact on research into the application of immunotherapy in treating lung cancer. Better understanding how a critical protein to allow cancer cells to escape immune system may aid in development of improved immunotherapies for lung cancer. The membrane protein PD-L1, expressed on tumor cells, helps them to evade the immune surveillance; existing treatments that block PD-L1 have very low efficacy for some patient partly due to re-expression of PD-L1. Jing Li at Ocean University of China in Qingdao and co-workers found that TGF-β up-regulated in tumor microenvironment boosts PD-L1 transcription and expression in an unusual way, namely, via MRTF-A-NF-κB/p65 axis. Blocking MRTF-A in a mouse model remarkably increased levels of immune cells targeting the tumor and slowed lung tumor growth. These results illuminate the mechanism of immune escape in lung cancers upon TGF-β, which may contribute to develop new treatment to synergize PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Fu Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Fanfan Sui
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xuemin Wang
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Christopher G Proud
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cunzhi Lin
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266555, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China. .,Open Studio for Drug Research on Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, People's Republic of China.
| |
Collapse
|
16
|
Shahini A, Rajabian N, Choudhury D, Shahini S, Vydiam K, Nguyen T, Kulczyk J, Santarelli T, Ikhapoh I, Zhang Y, Wang J, Liu S, Stablewski A, Thiyagarajan R, Seldeen K, Troen BR, Peirick J, Lei P, Andreadis ST. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. SCIENCE ADVANCES 2021; 7:eabe5671. [PMID: 34516892 PMCID: PMC8442867 DOI: 10.1126/sciadv.abe5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Joseph Kulczyk
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Tyler Santarelli
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Izuagie Ikhapoh
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center
| | - Ramkumar Thiyagarajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kenneth Seldeen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bruce R. Troen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14260, USA
| | - Jennifer Peirick
- Laboratory Animal Facilities, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center for Cell Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
17
|
Chiavellini P, Canatelli-Mallat M, Lehmann M, Gallardo MD, Herenu CB, Cordeiro JL, Clement J, Goya RG. Aging and rejuvenation - a modular epigenome model. Aging (Albany NY) 2021; 13:4734-4746. [PMID: 33627519 PMCID: PMC7950254 DOI: 10.18632/aging.202712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
The view of aging has evolved in parallel with the advances in biomedical sciences. Long considered as an irreversible process where interventions were only aimed at slowing down its progression, breakthrough discoveries like animal cloning and cell reprogramming have deeply changed our understanding of postnatal development, giving rise to the emerging view that the epigenome is the driver of aging. The idea was significantly strengthened by the converging discovery that DNA methylation (DNAm) at specific CpG sites could be used as a highly accurate biomarker of age defined by an algorithm known as the Horvath clock. It was at this point where epigenetic rejuvenation came into play as a strategy to reveal to what extent biological age can be set back by making the clock tick backwards. Initial evidence suggests that when the clock is forced to tick backwards in vivo, it is only able to drag the phenotype to a partially rejuvenated condition. In order to explain the results, a bimodular epigenome is proposed, where module A represents the DNAm clock component and module B the remainder of the epigenome. Epigenetic rejuvenation seems to hold the key to arresting or even reversing organismal aging.
Collapse
Affiliation(s)
- Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP) - Histology B and Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Martina Canatelli-Mallat
- Institute for Biochemical Research (INIBIOLP) - Histology B and Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP) - Histology B and Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Maria D. Gallardo
- Institute for Biochemical Research (INIBIOLP) - Histology B and Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Claudia B. Herenu
- Institute for Experimental Pharmacology (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | | | | | - Rodolfo G. Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B and Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| |
Collapse
|
18
|
Fei W, Liu M, Zhang Y, Cao S, Wang X, Xie B, Wang J. Identification of key pathways and hub genes in the myogenic differentiation of pluripotent stem cell: a bioinformatics and experimental study. J Orthop Surg Res 2021; 16:4. [PMID: 33397419 PMCID: PMC7784349 DOI: 10.1186/s13018-020-01979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background The regeneration of muscle cells from stem cells is an intricate process, and various genes are included in the process such as myoD, mf5, mf6, etc. The key genes and pathways in the differentiating stages are various. Therefore, the differential expression of key genes after 4 weeks of differentiation were investigated in our study. Method Three published gene expression profiles, GSE131125, GSE148994, and GSE149055, about the comparisons of pluripotent stem cells to differentiated cells after 4 weeks were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) were obtained for further analysis such as protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA analysis. After hub genes and key pathways were obtained, we manipulated in vitro cell research for substantiation such as immunohistochemical staining and semi-quantitative analysis and quantitative real-time PCR. Results A total of 824 DEGs including 350 upregulated genes and 474 downregulated genes were identified in the three GSEs. Nineteen hub genes were identified from the PPI network. The GO and KEGG pathway analyses confirmed that myogenic differentiation at 4 weeks was strongly associated with pathway in cancer, PI3K pathway, actin cytoskeleton regulation and metabolic pathway, biosynthesis of antibodies, and cell cycle. GSEA analysis indicated the differentiated cells were enriched in muscle cell development and myogenesis. Meanwhile, the core genes in each pathway were identified from the GSEA analysis. The in vitro cell research revealed that actin cytoskeleton and myoD were upregulated after 4-week differentiation. Conclusions The research revealed the potential hub genes and key pathways after 4-week differentiation of stem cells which contribute to further study about the molecular mechanism of myogenesis regeneration, paving a way for more accurate treatment for muscle dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-01979-x.
Collapse
Affiliation(s)
- Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China
| | - Mingsheng Liu
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Yao Zhang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Shichao Cao
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Xuanqi Wang
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Bin Xie
- Dalian Medical University, Dalian, 116044, Dalian, China
| | - Jingcheng Wang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, 98# Nantong xi Road, Yangzhou, 225001, China.
| |
Collapse
|
19
|
Muñoz MF, Argüelles S, Marotta F, Barbagallo M, Cano M, Ayala A. Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6473279. [PMID: 33425211 PMCID: PMC7775166 DOI: 10.1155/2020/6473279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
A wide range of clinical applications in regenerative medicine were opened decades ago with the discovery of adult stem cells. Highly promising adult stem cells are mesenchymal stem/stromal cells derived from adipose tissue (ADSCs), primarily because of their abundance and accessibility. These cells have multipotent properties and have been used extensively to carry out autologous transplants. However, the biology of these cells is not entirely understood. Among other factors, the regeneration capacity of these cells will depend on both their capacity of proliferation/differentiation and the robustness of the biochemical pathways that allow them to survive under adverse conditions like those found in damaged tissues. The transcription factors, such as Nanog and Sox2, have been described as playing an important role in stem cell proliferation and differentiation. Also, the so-called longevity pathways, in which AMPK and SIRT1 proteins play a crucial role, are essential for cell homeostasis under stressful situations. These pathways act by inhibiting the translation through downregulation of elongation factor-2 (eEF2). In order to deepen knowledge of mesenchymal stem cell biology and which factors are determinant in the final therapeutic output, we evaluate in the present study the levels of all of these proteins in the ADSCs from humans and rats and how these levels are affected by aging and the oxidative environment. Due to the effect of aging and oxidative stress, our results suggest that before performing a cell therapy with ADSCs, several aspects reported in this study such as oxidative stress status and proliferation and differentiation capacity should be assessed on these cells. This would allow us to know the robustness of the transplanted cells and to predict the therapeutic result, especially in elder patients, where probably ADSCs do not carry out their biological functions in an optimal way.
Collapse
Affiliation(s)
- Mario F. Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Sandro Argüelles
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention & Vitality Therapeutics, San Babila Clinic, Milan, Italy
| | - Mario Barbagallo
- Department of Geriatrics and Internal Medicine, University of Palermo, Italy
| | - Mercedes Cano
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Antonio Ayala
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
20
|
Nasiri B, Row S, Smith RJ, Swartz DD, Andreadis ST. Cell-free vascular grafts that grow with the host. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005769. [PMID: 33551712 PMCID: PMC7857470 DOI: 10.1002/adfm.202005769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell-free small diameter vascular grafts, based on small intestinal submucosa (SIS) functionalized with heparin and vascular endothelial growth factor (VEGF) manufactured and implanted successfully into the arterial system of neonatal lambs, where they remained patent and grew in size with the host to a similar extent and with similar rate as native arteries. Acellular tissue engineered vessels (A-TEV) integrated seamlessly into the native vasculature and developed confluent, functional endothelium that afforded patency. The medial layer was infiltrated by smooth muscle cells, showed no signs of calcification and developed contractile function. The vascular wall underwent remarkable extracellular matrix remodeling exhibiting elastin fibers and even inner elastic lamina within six months. Taken together, our results suggest that VEGF-based A-TEVs may be suitable for treatment of congenital heart disorders to alleviate the need for repeated surgeries, which are currently standard practice.
Collapse
Affiliation(s)
- Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Angiograft LLC, Amherst NY
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Daniel D. Swartz
- Angiograft LLC, Amherst NY
- Address for correspondence: Stelios Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822, , Daniel D. Swartz, Ph.D., Angiograft, LLC, Amherst, NY,
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
- Angiograft LLC, Amherst NY
- Address for correspondence: Stelios Andreadis, Ph.D., SUNY Distinguished Professor, Bioengineering Laboratory, 908 Furnas Hall, Department of Chemical and Biological Engineering, Department of Biomedical Engineering, and Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA, Tel: (716) 645-1202, Fax: (716) 645-3822, , Daniel D. Swartz, Ph.D., Angiograft, LLC, Amherst, NY,
| |
Collapse
|
21
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
22
|
Saxena S, Kumar S. Pharmacotherapy to gene editing: potential therapeutic approaches for Hutchinson-Gilford progeria syndrome. GeroScience 2020; 42:467-494. [PMID: 32048129 PMCID: PMC7205988 DOI: 10.1007/s11357-020-00167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS), commonly called progeria, is an extremely rare disorder that affects only one child per four million births. It is characterized by accelerated aging in affected individuals leading to premature death at an average age of 14.5 years due to cardiovascular complications. The main cause of HGPS is a sporadic autosomal dominant point mutation in LMNA gene resulting in differently spliced lamin A protein known as progerin. Accumulation of progerin under nuclear lamina and activation of its downstream effectors cause perturbation in cellular morphology and physiology which leads to a systemic disorder that mainly impairs the cardiovascular system, bones, skin, and overall growth. Till now, no cure has been found for this catastrophic disorder; however, several therapeutic strategies are under development. The current review focuses on the overall progress in the field of therapeutic approaches for the management/cure of HGPS. We have also discussed the new disease models that have been developed for the study of this rare disorder. Moreover, we have highlighted the therapeutic application of extracellular vesicles derived from stem cells against aging and aging-related disorders and, therefore, suggest the same for the treatment of HGPS.
Collapse
Affiliation(s)
- Saurabh Saxena
- Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| | - Sanjeev Kumar
- Faculty of Technology and Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
23
|
Deacetylation of MRTF-A by SIRT1 defies senescence induced down-regulation of collagen type I in fibroblast cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165723. [PMID: 32061777 DOI: 10.1016/j.bbadis.2020.165723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Aging provokes both morphological and functional changes in cells, which are accompanied by a fundamental shift in gene expression patterns. One of the characteristic alterations associated with senescence in fibroblast cells is the down-regulation of collagen type I genes. In the present study, we investigated the contribution of myocardin-related transcription factor A, or MRTF-A, in this process. In mouse embryonic fibroblast (MEF) cells and human foreskin fibroblast (HFF) cells, senescence, induced by either progressive passage or treatment with hydrogen peroxide (H2O2), led to augmented lysine acetylation of MRTF-A paralleling down-regulation of collagen type I and SIRT1, a lysine deacetylase. SIRT1 interacted with MRTF-A to promote MRTF-A deacetylation. SIRT1 over-expression or activation by selective agonists enhanced trans-activation of the collagen promoters by MRTF-A. On the contrary, SIRT1 depletion or inhibition by specific antagonists suppressed trans-activation of the collagen promoters by MRTF-A. Likewise, mutation of four lysine residues within MRTF-A rendered it more potent in terms of activating the collagen promoters but unresponsive to SIRT1. Importantly, SIRT1 activation in senescent fibroblasts mitigated repression of collagen type I expression whereas SIRT1 inhibition promoted the loss of collagen type I expression prematurely in young fibroblasts. Mechanistically, SIRT1 enhanced the affinity of MRTF-A for the collagen type I promoters. In conclusion, our data unveil a novel mechanism that underscores aging-associated loss of collagen type I in fibroblasts via SIRT1-mediated post-translational modification of MRTF-A.
Collapse
|
24
|
Rong N, Mistriotis P, Wang X, Tseropoulos G, Rajabian N, Zhang Y, Wang J, Liu S, Andreadis ST. Restoring extracellular matrix synthesis in senescent stem cells. FASEB J 2019; 33:10954-10965. [PMID: 31287964 PMCID: PMC6766659 DOI: 10.1096/fj.201900377r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023]
Abstract
Collagen type III (COL3) is one of the 3 major collagens in the body, and loss of expression or mutations in the COL3 gene have been associated with the onset of vascular diseases such the Ehlers-Danlos syndrome. Previous work reported a significant reduction of COL3 in tissues such as skin and vessels with aging. In agreement, we found that COL3 was significantly reduced in senescent human mesenchymal stem cells and myofibroblasts derived from patients with Hutchinson-Gilford progeria syndrome, a premature aging syndrome. Most notably, we discovered that ectopic expression of the embryonic transcription factor Nanog homeobox (NANOG) restored COL3 expression by restoring the activity of the TGF-β pathway that was impaired in senescent cells. RNA sequencing analysis showed that genes associated with the activation of the TGF-β pathway were up-regulated, whereas negative regulators of the pathway were down-regulated upon NANOG expression. Chromatin immunoprecipitation sequencing and immunoprecipitation experiments revealed that NANOG bound to the mothers against decapentaplegic (SMAD)2 and SMAD3 promoters, in agreement with increased expression and phosphorylation levels of both proteins. Using chemical inhibition, short hairpin RNA knockdown, and gain of function approaches, we established that both SMAD2 and SMAD3 were necessary to mediate the effects of NANOG, but SMAD3 overexpression was also sufficient for COL3 production. In summary, NANOG restored production of COL3, which was impaired by cellular aging, suggesting novel strategies to restore the impaired extracellular matrix production and biomechanical function of aged tissues, with potential implications for regenerative medicine and anti-aging treatments.-Rong, N., Mistriotis, P., Wang, X., Tseropoulos, G., Rajabian, N., Zhang, Y., Wang, J., Liu, S., Andreadis, S. T. Restoring extracellular matrix synthesis in senescent stem cells.
Collapse
Affiliation(s)
- Na Rong
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Panagiotis Mistriotis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Xiaoyan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| |
Collapse
|
25
|
Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep 2019; 9:9750. [PMID: 31278326 PMCID: PMC6611768 DOI: 10.1038/s41598-019-46140-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
Neural crest (NC) cells are multipotent stem cells that arise from the embryonic ectoderm, delaminate from the neural tube in early vertebrate development and migrate throughout the developing embryo, where they differentiate into various cell lineages. Here we show that multipotent and functional NC cells can be derived by induction with a growth factor cocktail containing FGF2 and IGF1 from cultures of human inter-follicular keratinocytes (KC) isolated from elderly donors. Adult NC cells exhibited longer doubling times as compared to neonatal NC cells, but showed limited signs of cellular senescence despite the advanced age of the donors and exhibited significantly younger epigenetic age as compared to KC. They also maintained their multipotency, as evidenced by their ability to differentiate into all NC-specific lineages including neurons, Schwann cells, melanocytes, and smooth muscle cells (SMC). Notably, upon implantation into chick embryos, adult NC cells behaved similar to their embryonic counterparts, migrated along stereotypical pathways and contributed to multiple NC derivatives in ovo. These results suggest that KC-derived NC cells may provide an easily accessible, autologous source of stem cells that can be used for treatment of neurodegenerative diseases or as a model system for studying disease pathophysiology and drug development.
Collapse
|
26
|
Khatiwala RV, Zhang S, Li X, Devejian N, Bennett E, Cai C. Inhibition of p16 INK4A to Rejuvenate Aging Human Cardiac Progenitor Cells via the Upregulation of Anti-oxidant and NFκB Signal Pathways. Stem Cell Rev Rep 2018; 14:612-625. [PMID: 29675777 DOI: 10.1007/s12015-018-9815-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Autologous human cardiac stem/progenitor cell (hCPC) therapy is a promising treatment that has come into use in recent years for patients with cardiomyopathy. Though innovative in theory, a major hindrance to the practical application of this treatment is that the hCPCs of elderly patients, who are most susceptible to myocardial disease, are senescent and prone to cell death. Rejuvenating hCPCs from elderly patients may help overcome this obstacle, and can be accomplished by reversing entry into the cellular stage of senescence. p16INK4A, a cyclin dependent kinase inhibitor, is an important player in the regulation of cell senescence. In this study, we investigated whether knockdown of p16INK4A will rejuvenate aging hCPCs to a youthful phenotype. Our data indicated that upregulation of p16INK4A is associated with hCPC senescence. Both cell proliferation and survival capacity were significantly increased in hCPCs infected with lentivirus expressing p16INK4A shRNA when compared to control hCPCs. The knockdown of p16INK4A also induced antioxidant properties as indicated by a 50% decrease in ROS generation at basal cell metabolism, and a 25% decrease in ROS generation after exposure to oxidative stress. Genes associated with cell senescence (p21CIP1), anti-apoptosis (BCL2 and MCL1), anti-oxidant (CYGB, PRDX1 and SRXN1), and NFκB signal pathway (p65, IKBKB, HMOX1, etc.), were significantly upregulated after the p16INK4A knockdown. Knocking down the NFĸB-p65 expression also significantly diminished the cytoprotective effect caused by the p16INK4A knockdown. Our results suggest that genetic knockdown of p16INK4A may play a significant role in inducing antioxidant effects and extending lifespan of aging hCPCs. This genetic modification may enhance the effectiveness of autologous hCPC therapy for repair of infarcted myocardium.
Collapse
Affiliation(s)
- Roshni V Khatiwala
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Shuning Zhang
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuchun Li
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - Chuanxi Cai
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Sciences, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
27
|
Goya RG, Lehmann M, Chiavellini P, Canatelli-Mallat M, Hereñú CB, Brown OA. Rejuvenation by cell reprogramming: a new horizon in gerontology. Stem Cell Res Ther 2018; 9:349. [PMID: 30558644 PMCID: PMC6296020 DOI: 10.1186/s13287-018-1075-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The discovery of animal cloning and subsequent development of cell reprogramming technology were quantum leaps as they led to the achievement of rejuvenation by cell reprogramming and the emerging view that aging is a reversible epigenetic process. Here, we will first summarize the experimental achievements over the last 7 years in cell and animal rejuvenation. Then, a comparison will be made between the principles of the cumulative DNA damage theory of aging and the basic facts underlying the epigenetic model of aging, including Horvath's epigenetic clock. The third part will apply both models to two natural processes, namely, the setting of the aging clock in the mammalian zygote and the changes in the aging clock along successive generations in mammals. The first study demonstrating that skin fibroblasts from healthy centenarians can be rejuvenated by cell reprogramming was published in 2011 and will be discussed in some detail. Other cell rejuvenation studies in old humans and rodents published afterwards will be very briefly mentioned. The only in vivo study reporting that a number of organs of old progeric mice can be rejuvenated by cyclic partial reprogramming will also be described in some detail. The cumulative DNA damage theory of aging postulates that as an animal ages, toxic reactive oxygen species generated as byproducts of the mitochondria during respiration induce a random and progressive damage in genes thus leading cells to a progressive functional decline. The epigenetic model of aging postulates that there are epigenetic marks of aging that increase with age, leading to a progressive derepression of DNA which in turn causes deregulated expression of genes that disrupt cell function. The cumulative DNA damage model of aging fails to explain the resetting of the aging clock at the time of conception as well as the continued vitality of species as millenia go by. In contrast, the epigenetic model of aging straightforwardly explains both biologic phenomena. A plausible initial application of rejuvenation in vivo would be preventing adult individuals from aging thus eliminating a major risk factor for end of life pathologies. Further, it may allow the gradual achievement of whole body rejuvenation.
Collapse
Affiliation(s)
- Rodolfo G. Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Martina Canatelli-Mallat
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| | - Claudia B. Hereñú
- Institute for Experimental Pharmacology Cordoba(IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Oscar A. Brown
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, CC 455, 1900 La Plata, Argentina
| |
Collapse
|
28
|
Forte A, Bancone C, Cipollaro M, De Feo M, Della Corte A. Ascending aortas from heart donors and CABG patients are not equivalent as control in aortopathy studies. SCAND CARDIOVASC J 2018; 52:281-286. [PMID: 30043668 DOI: 10.1080/14017431.2018.1494303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES A careful selection of reference samples in studies on the pathogenesis of thoracic ascending aorta (TAA) dilation is crucial for reliability, consistency and reproducibility of experimental results. Several studies include control TAA samples from heart donors. Others include samples harvested during coronary artery bypass graft (CABG) procedures or a mix of samples from heart donors and CABG patients. We verified the equivalence/homogeneity of TAA samples from heart donors and CABG patients in terms of basal gene expression and thus their reliability as reference groups in aortopathy studies. DESIGN We analysed by RT-PCR and Western blot the differential expression of smoothelin, α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1), selected as major players in smooth muscle cell and myofibroblast phenotype and remodelling. The mean age and comorbidities of subjects were consistent with data routinely seen in clinical practice. RESULTS Data revealed the loss of smoothelin in samples from CABG patients, together with a significant increase of α-SMA, while TGF-β1 dimer showed a marked increase in CABG patients versus heart donors, accompanied by a decrease of the corresponding mRNA. Differences in gene expression were maintained after adjustment for age. However, TGF-β1 mRNA and CABG patients' age showed a positive correlation (ρ = 0.89, p < .05), while α-SMA mRNA and age showed a negative correlation (ρ = -0.85, p < .05). CONCLUSIONS We revealed the non-equivalence of samples from heart donors and CABG patients, presumably for the presence of microscopic atherosclerotic lesions in CABG patients, suggesting the necessity of a careful selection of control groups in aortopathy studies.
Collapse
Affiliation(s)
- Amalia Forte
- a Department of Translational Medical Sciences , Università degli Studi della Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Bancone
- a Department of Translational Medical Sciences , Università degli Studi della Campania "L. Vanvitelli" , Naples , Italy
| | - Marilena Cipollaro
- b Department of Experimental Medicine , Università degli Studi della Campania "L. Vanvitelli" , Naples , Italy
| | - Marisa De Feo
- a Department of Translational Medical Sciences , Università degli Studi della Campania "L. Vanvitelli" , Naples , Italy
| | - Alessandro Della Corte
- a Department of Translational Medical Sciences , Università degli Studi della Campania "L. Vanvitelli" , Naples , Italy
| |
Collapse
|
29
|
Shahini A, Choudhury D, Asmani M, Zhao R, Lei P, Andreadis ST. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Res 2017; 26:55-66. [PMID: 29245050 DOI: 10.1016/j.scr.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle regeneration relies on the activity of satellite cells residing in the skeletal muscle niche. However, systemic and intrinsic factors decrease the myogenic differentiation potential of satellite cells thereby impairing muscle regeneration. Here we present data showing that late passage C2C12 myoblasts exhibited significantly impaired myogenic differentiation potential that was accompanied by impaired expression of myogenic regulatory factors (Myf5, MyoD, Myogenin, and MRF4) and members of myocyte enhancer factor 2 family. Notably, ectopic expression of NANOG preserved the morphology and restored the myogenic differentiation capacity of late passage myoblasts, possibly by restoring the expression level of these myogenic factors. Muscle regeneration was effective in 2D cultures and in 3D skeletal microtissues mimicking the skeletal muscle niche. The presence of NANOG was required for at least 15days to reverse the impaired differentiation potential of myoblasts. However, it was critical to remove NANOG during the process of maturation, as it inhibited myotube formation. Finally, myoblasts that were primed by NANOG maintained their differentiation capacity for 20days after NANOG withdrawal, suggesting potential epigenetic changes. In conclusion, these results shed light on the potential of NANOG to restore the myogenic differentiation potential of myoblasts, which is impaired after multiple rounds of cellular division, and to reverse the loss of muscle regeneration.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA.
| |
Collapse
|
30
|
López-León M, Outeiro TF, Goya RG. Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain. Ageing Res Rev 2017; 40:168-181. [PMID: 28903069 DOI: 10.1016/j.arr.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.
Collapse
Affiliation(s)
- Micaela López-León
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP) - Histology B & Pathology B, School of Medicine, National University of La Plata, La Plata, Argentina.
| |
Collapse
|
31
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
32
|
Shahini A, Mistriotis P, Asmani M, Zhao R, Andreadis ST. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng Part A 2017; 23:535-545. [PMID: 28125933 DOI: 10.1089/ten.tea.2016.0494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively used in the field of tissue engineering as a source of smooth muscle cells (SMCs). However, recent studies showed deficits in the contractile function of SMCs derived from senescent MSCs and there are no available strategies to restore the contractile function that is impaired due to cellular or organismal senescence. In this study, we developed a tetracycline-regulatable system and employed micropost tissue arrays to evaluate the effects of the embryonic transcription factor, NANOG, on the contractility of senescent MSCs. Using this system, we show that expression of NANOG fortified the actin cytoskeleton and restored contractile function that was impaired in senescent MSCs. NANOG increased the expression of smooth muscle α-actin (ACTA2) as well as the contractile force generated by cells in three-dimensional microtissues. Interestingly, NANOG worked together with transforming growth factor-beta1 to further enhance the contractility of senescent microtissues. The effect of NANOG on contractile function was sustained for about 10 days after termination of its expression. Our results show that NANOG could reverse the effects of stem cell senescence and restore the myogenic differentiation potential of senescent MSCs. These findings may enable development of novel strategies to restore the function of senescent cardiovascular and other SMC-containing tissues.
Collapse
Affiliation(s)
- Aref Shahini
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Panagiotis Mistriotis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Mohammadnabi Asmani
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Ruogang Zhao
- 2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York
| | - Stelios T Andreadis
- 1 Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Amherst, New York.,2 Department of Biomedical Engineering, University at Buffalo, The State University of New York , Amherst, New York.,3 Center of Excellence in Bioinformatics and Life Sciences , Buffalo, New York
| |
Collapse
|