1
|
Petazzi P, Gutierrez-Agüera F, Roca-Ho H, Castaño J, Bueno C, Alvarez N, Forrester LM, Sevilla A, Fidanza A, Menendez P. Generation of an inducible dCas9-SAM human PSC line for endogenous gene activation. Front Cell Dev Biol 2024; 12:1484955. [PMID: 39676795 PMCID: PMC11638181 DOI: 10.3389/fcell.2024.1484955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
The CRISPR/Cas9 system has transformed genome editing by enabling precise modifications for diverse applications. Recent advancements, including base editing and prime editing, have expanded its utility beyond conventional gene knock-out and knock-in strategies. Additionally, several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains have been developed to modulate endogenous gene expression when directed to their regulatory regions by specific single-guide RNAs. Here, we report the development of the H9 human pluripotent stem cell (hPSC) line expressing an inducible dCas9-SAM activator (H9-iCas9.SAM), designed to activate transcription of endogenous genes. The H9-iCas9.SAM cells were generated through targeted integration of an inducible CRISPR/Cas9-based gene activator cassette into the AAVS1 "safe-harbour" locus. Molecular analyses confirmed precise and specific integration, ensuring minimal off-target effects. Functional characterization revealed that H9-iCas9.SAM cells retain pluripotency and display inducible endogenous gene activation upon doxycycline treatment. The versatility of H9-iCas9.SAM cells was demonstrated in directed in vitro differentiation assays, yielding neural stem cells (ectoderm), hematopoietic progenitor cells (mesoderm), and hepatocytes (endoderm). This underscores their potential in developmental biology studies and cell therapy applications. The engineered H9-iCas9.SAM line provides a robust platform for investigating gene function and advancing next-generation cell-based therapies.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain
| | | | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Carlos III Health Institute, Barcelona, Spain
- Spanish Cancer Network (CIBERONC), Carlos III Health Institute, Barcelona, Spain
| | - Niuska Alvarez
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lesley M Forrester
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Sevilla
- Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Campus Clinic-UB, Casanova 143, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Carlos III Health Institute, Barcelona, Spain
- Spanish Cancer Network (CIBERONC), Carlos III Health Institute, Barcelona, Spain
- Department of Biomedicine, School of Medicine, Casanova 143, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Wang S, Jain A, Novales NA, Nashner AN, Tran F, Clarke CF. Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes. Antioxidants (Basel) 2022; 11:antiox11122308. [PMID: 36552517 PMCID: PMC9774615 DOI: 10.3390/antiox11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.
Collapse
|
3
|
Petazzi P, Miquel‐Serra L, Huertas S, González C, Boto N, Muñiz‐Diaz E, Menéndez P, Sevilla A, Nogués N. ABO gene editing for the conversion of blood type A to universal type O in Rh null donor-derived human-induced pluripotent stem cells. Clin Transl Med 2022; 12:e1063. [PMID: 36281739 PMCID: PMC9593258 DOI: 10.1002/ctm2.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
The limited availability of red cells with extremely rare blood group phenotypes is one of the global challenges in transfusion medicine that has prompted the search for alternative self-renewable pluripotent cell sources for the in vitro generation of red cells with rare blood group types. One such phenotype is the Rhnull , which lacks all the Rh antigens on the red cell membrane and represents one of the rarest blood types in the world with only a few active blood donors available worldwide. Rhnull red cells are critical for the transfusion of immunized patients carrying the same phenotype, besides its utility in the diagnosis of Rh alloimmunization when a high-prevalence Rh specificity is suspected in a patient or a pregnant woman. In both scenarios, the potential use of human-induced pluripotent stem cell (hiPSC)-derived Rhnull red cells is also dependent on ABO compatibility. Here, we present a CRISPR/Cas9-mediated ABO gene edition strategy for the conversion of blood type A to universal type O, which we have applied to an Rhnull donor-derived hiPSC line, originally carrying blood group A. This work provides a paradigmatic example of an approach potentially applicable to other hiPSC lines derived from rare blood donors not carrying blood type O.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
| | - Laia Miquel‐Serra
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Sergio Huertas
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Cecilia González
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Neus Boto
- Immunohematology LaboratoryBarcelonaSpain
| | - Eduardo Muñiz‐Diaz
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer‐CIBER‐ONCInstituto de Salud Carlos IIIBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)Instituto de Salud Carlos III (RICORS, RD21/0017/0029)
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Ana Sevilla
- Department of Cell BiologyPhysiology and Immunology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Núria Nogués
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| |
Collapse
|
4
|
Ma J, Fu X, Zhou S, Meng E, Yang Z, Zhang H. Study on the serum level of CoQ10B in patients with Moyamoya disease and its mechanism of affecting disease progression. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:469-474. [PMID: 35613207 DOI: 10.1590/0004-282x-anp-2021-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND At present, the etiology and pathogenesis of Moyamoya disease (MMD) are not completely clear. Patients are usually diagnosed after cerebrovascular events. Therefore, it is of great clinical significance to explore the predictive factors of MMD. OBJECTIVE This study aimed to investigate the serum level of CoQ10B, the amount of endothelial progenitor cells (EPCs), and mitochondrial function of EPCs in MMD patients. METHODS Forty-one MMD patients and 20 healthy controls were recruited in this study. Patients with MMD were divided into two groups: Ischemic type (n=23) and hemorrhagic type (n=18). Blood samples were collected from the antecubital vein and analyzed by CoQ10B ELISA and flow cytometry. Measures of mitochondrial function of EPCs include oxygen consumption rate (OCR), mitochondrial membrane potential, Ca2+ concentration, adenosine triphosphatases activity and ROS level. RESULTS The serum CoQ10B level in MMD patients was significantly lower than that in healthy controls (p<0.001). The relative number of EPCs in MMD patients was significantly higher than that in healthy controls (p<0.001). Moreover, the OCR, mitochondrial membrane potential and ATPase activity were decreased and the Ca2+ and reactive oxygen species levels were increased in MMD patients (p<0.001). CONCLUSIONS Our results showed obviously decreased serum CoQ10B level and increased EPCs number in patients with MMD compared with healthy patients, and the mitochondria function of EPCs in MMD patients was abnormal.
Collapse
Affiliation(s)
- Jian Ma
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Xudong Fu
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Shaolong Zhou
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Enping Meng
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Zhuo Yang
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| | - Hengwei Zhang
- Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou, Department of Neurosurgery, Henan, China
| |
Collapse
|
5
|
Rakovic A, Voß D, Vulinovic F, Meier B, Hellberg AK, Nau C, Klein C, Leipold E. Electrophysiological Properties of Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons Correlate With Expression of Tyrosine Hydroxylase. Front Cell Neurosci 2022; 16:817198. [PMID: 35401116 PMCID: PMC8983830 DOI: 10.3389/fncel.2022.817198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based generation of tyrosine hydroxylase-positive (TH+) dopaminergic neurons (DNs) is a powerful method for creating patient-specific in vitro models to elucidate mechanisms underlying Parkinson’s disease (PD) at the cellular and molecular level and to perform drug screening. However, currently available differentiation paradigms result in highly heterogeneous cell populations, often yielding a disappointing fraction (<50%) of the PD-relevant TH+ DNs. To facilitate the targeted analysis of this cell population and to characterize their electrophysiological properties, we employed CRISPR/Cas9 technology and generated an mCherry-based human TH reporter iPSC line. Subsequently, reporter iPSCs were subjected to dopaminergic differentiation using either a “floor plate protocol” generating DNs directly from iPSCs or an alternative method involving iPSC-derived neuronal precursors (NPC-derived DNs). To identify the strategy with the highest conversion efficiency to mature neurons, both cultures were examined for a period of 8 weeks after triggering neuronal differentiation by means of immunochemistry and single-cell electrophysiology. We confirmed that mCherry expression correlated with the expression of endogenous TH and that genetic editing did neither affect the differentiation process nor the endogenous TH expression in iPSC- and NPC-derived DNs. Although both cultures yielded identical proportions of TH+ cells (≈30%), whole-cell patch-clamp experiments revealed that iPSC-derived DNs gave rise to larger currents mediated by voltage-gated sodium and potassium channels, showed a higher degree of synaptic activity, and fired trains of mature spontaneous action potentials more frequently compared to NPC-derived DNs already after 2 weeks in differentiation. Moreover, spontaneous action potential firing was more frequently detected in TH+ neurons compared to the TH– cells, providing direct evidence that these two neuronal subpopulations exhibit different intrinsic electrophysiological properties. In summary, the data reveal substantial differences in the electrophysiological properties of iPSC-derived TH+ and TH– neuronal cell populations and that the “floor plate protocol” is particularly efficient in generating electrophysiologically mature TH+ DNs, which are the most vulnerable neuronal subtype in PD.
Collapse
Affiliation(s)
| | - Dorothea Voß
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- *Correspondence: Enrico Leipold,
| |
Collapse
|
6
|
Xie J, Jiang J, Guo Q. Primary Coenzyme Q10 Deficiency-7 and Pathogenic COQ4 Variants: Clinical Presentation, Biochemical Analyses, and Treatment. Front Genet 2022; 12:776807. [PMID: 35154243 PMCID: PMC8826242 DOI: 10.3389/fgene.2021.776807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary Coenzyme Q10 Deficiency-7 (COQ10D7) is a rare mitochondrial disorder caused by pathogenic COQ4 variants. In this review, we discuss the correlation of COQ4 genotypes, particularly the East Asian-specific c.370G > A variant, with the clinical presentations and therapeutic effectiveness of coenzyme Q10 supplementation from an exon-dependent perspective. Pathogenic COQ4 variants in exons 1–4 are associated with less life-threating presentations, late onset, responsiveness to CoQ10 therapy, and a relatively long lifespan. In contrast, pathogenic COQ4 variants in exons 5–7 are associated with early onset, unresponsiveness to CoQ10 therapy, and early death and are more fatal. Patients with the East Asian-specific c.370G > A variant displays intermediate disease severity with multi-systemic dysfunction, which is between that of the patients with variants in exons 1–4 and 5–7. The mechanism underlying this exon-dependent genotype-phenotype correlation may be associated with the structure and function of COQ4. Sex is shown unlikely to be associated with disease severity. While point-of-care high-throughput sequencing would be useful for the rapid diagnosis of pathogenic COQ4 variants, whereas biochemical analyses of the characteristic impairments in CoQ10 biosynthesis and mitochondrial respiratory chain activity, as well as the phenotypic rescue of the CoQ10 treatment, are necessary to confirm the pathogenicity of suspicious variants. In addition to CoQ10 derivatives, targeted drugs and gene therapy could be useful treatments for COQ10D7 depending on the in-depth functional investigations and the development of gene editing technologies. This review provides a fundamental reference for the sub-classification of COQ10D7 and aim to advance our knowledge of the pathogenesis, clinical diagnosis, and prognosis of this disease and possible interventions.
Collapse
Affiliation(s)
- Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Jiayang Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,School of Medicine, Huaqiao University, Quanzhou, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Moreira JD, Gopal DM, Kotton DN, Fetterman JL. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do? Genes (Basel) 2021; 12:1668. [PMID: 34828274 PMCID: PMC8624338 DOI: 10.3390/genes12111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized organelles involved in energy production that have retained their own genome throughout evolutionary history. The mitochondrial genome (mtDNA) is maternally inherited and requires coordinated regulation with nuclear genes to produce functional enzyme complexes that drive energy production. Each mitochondrion contains 5-10 copies of mtDNA and consequently, each cell has several hundreds to thousands of mtDNAs. Due to the presence of multiple copies of mtDNA in a mitochondrion, mtDNAs with different variants may co-exist, a condition called heteroplasmy. Heteroplasmic variants can be clonally expanded, even in post-mitotic cells, as replication of mtDNA is not tied to the cell-division cycle. Heteroplasmic variants can also segregate during germ cell formation, underlying the inheritance of some mitochondrial mutations. Moreover, the uneven segregation of heteroplasmic variants is thought to underlie the heterogeneity of mitochondrial variation across adult tissues and resultant differences in the clinical presentation of mitochondrial disease. Until recently, however, the mechanisms mediating the relation between mitochondrial genetic variation and disease remained a mystery, largely due to difficulties in modeling human mitochondrial genetic variation and diseases. The advent of induced pluripotent stem cells (iPSCs) and targeted gene editing of the nuclear, and more recently mitochondrial, genomes now provides the ability to dissect how genetic variation in mitochondrial genes alter cellular function across a variety of human tissue types. This review will examine the origins of mitochondrial heteroplasmic variation and propagation, and the tools used to model mitochondrial genetic diseases. Additionally, we discuss how iPSC technologies represent an opportunity to advance our understanding of human mitochondrial genetics in disease.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| | - Deepa M. Gopal
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston Medical Center, Center for Regenerative Medicine of Boston University, Boston, MA 02118, USA;
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessica L. Fetterman
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| |
Collapse
|
8
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
9
|
McKnight CL, Low YC, Elliott DA, Thorburn DR, Frazier AE. Modelling Mitochondrial Disease in Human Pluripotent Stem Cells: What Have We Learned? Int J Mol Sci 2021; 22:7730. [PMID: 34299348 PMCID: PMC8306397 DOI: 10.3390/ijms22147730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.
Collapse
Affiliation(s)
- Cameron L. McKnight
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yau Chung Low
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David A. Elliott
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - David R. Thorburn
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Ann E. Frazier
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia; (C.L.M.); (Y.C.L.); (D.A.E.); (D.R.T.)
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Awad AS, Nour El-Din M, Kamel R. CoQ10 augments candesartan protective effect against tourniquet-induced hind limb ischemia-reperfusion: Involvement of non-classical RAS and ROS pathways. Saudi Pharm J 2021; 29:724-733. [PMID: 34400868 PMCID: PMC8347674 DOI: 10.1016/j.jsps.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Tourniquet is a well-established model of hind limb ischemia–reperfusion (HLI/R) in rats. Nevertheless, measures should be taken to alleviate the expected injury from ischemia/ reperfusion (I/R). In the present study, 30 adult male Sprague-Dawley rats were randomly divided into 5 groups (n = 6): control, HLI/R, HLI/R given candesartan (1 mg/kg, P.O); HLI/R given Coenzyme Q10 (CoQ10) (10 mg/kg, P.O); HLI/R given candesartan (0.5 mg/kg) and CoQ10 (5 mg/kg). The drugs were administered for 7 days starting one hour after reperfusion. Candesartan and CoQ10 as well as their combination suppressed gastrocnemius content of angiotensin II while they raised angiotensin-converting enzyme 2 (ACE2) activity, angiotensin (1–7) expression, and Mas receptor mRNA level. Consequently, candesartan and/or CoQ10 reversed the oxidative stress and inflammatory changes that occurred following HLI/R as demonstrated by the rise of SOD activity and the decline of MDA, TNF-α, and IL-6 skeletal muscle content. Additionally, candesartan and/or CoQ10 diminished gastrocnemius active caspase-3 level and phospho-p38 MAPK protein expression. Our study proved that CoQ10 enhanced the beneficial effect of candesartan in a model of tourniquet-induced HLI/R by affecting classical and non-classical renin-angiotensin system (RAS) pathway. To our knowledge, this is the first study showing the impact of CoQ10 on skeletal muscle RAS in rats.
Collapse
Affiliation(s)
- Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Nasr City, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mahmoud Nour El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
11
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
12
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
13
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
14
|
Petazzi P, Torres-Ruiz R, Fidanza A, Roca-Ho H, Gutierrez-Agüera F, Castaño J, Rodriguez-Perales S, Díaz de la Guardia R, López-Millán B, Bigas A, Forrester LM, Bueno C, Menéndez P. Robustness of Catalytically Dead Cas9 Activators in Human Pluripotent and Mesenchymal Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:196-204. [PMID: 32171171 PMCID: PMC7068053 DOI: 10.1016/j.omtn.2020.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) and mesenchymal stromal/stem cells (hMSCs) are clinically relevant sources for cellular therapies and for modeling human development and disease. Many stem cell-based applications rely on the ability to activate several endogenous genes simultaneously to modify cell fate. However, genetic intervention of these cells remains challenging. Several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains can modulate gene expression when directed to their regulatory regions by a specific single-guide RNA (sgRNA). In this study, we have compared the ability of the first-generation dCas9-VP64 activator and the second-generation systems, dCas9-SAM and dCas9-SunTag, to induce gene expression in hPSCs and hMSCs. Several stem cell lines were tested for single and multiplexed gene activation. When the activation of several genes was compared, all three systems induced specific and potent gene expression in both single and multiplexed settings, but the dCas9-SAM and dCas9-SunTag systems resulted in the highest and most consistent level of gene expression. Simultaneous targeting of the same gene with multiple sgRNAs did not result in additive levels of gene expression in hPSCs nor hMSCs. We demonstrate the robustness and specificity of second-generation dCas9 activators as tools to simultaneously activate several endogenous genes in clinically relevant human stem cells.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Raul Torres-Ruiz
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Castaño
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Rafael Díaz de la Guardia
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Belén López-Millán
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer-CIBER-ONC, ISCIII, Barcelona, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
15
|
Abstract
Epilepsy is frequently a severe and sinister symptom in primary mitochondrial diseases, a group of more than 350 different genetic disorders characterized by mitochondrial dysfunction and extreme clinical and biochemical heterogeneity. Mitochondrial epilepsy is notoriously difficult to manage, principally because the vast majority of primary mitochondrial diseases currently lack effective therapies. Treating the underlying mitochondrial disorder is likely to be a more effective strategy than using traditional antiepileptic drugs. This review, initially presented at the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures at the Francis Crick Institute in London, summarizes the currently available and emerging therapies for mitochondrial epilepsy. Potentially treatable mitochondrial diseases include disorders of coenzyme Q10 biosynthesis and a group of mitochondrial respiratory chain complex I subunit and assembly factor defects that respond to riboflavin (vitamin B2). Approaches that have been adopted in actively recruiting clinical trials include redox modulation, harnessing mitochondrial biogenesis, using rapamycin to target mitophagy, nucleoside supplementation, and gene and cell therapies. Most of the clinical trials are at an early stage (Phase 1 or 2) and none of the currently active trials is specifically targeting mitochondrial epilepsy. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures".
Collapse
|
16
|
Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death Dis 2019; 10:898. [PMID: 31776327 PMCID: PMC6881336 DOI: 10.1038/s41419-019-2133-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
A major hallmark of Parkinson's disease is loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The pathophysiological mechanisms causing this relatively selective neurodegeneration are poorly understood, and thus experimental systems allowing to study dopaminergic neuron dysfunction are needed. Induced pluripotent stem cells (iPSCs) differentiated toward a dopaminergic neuronal phenotype offer a valuable source to generate human dopaminergic neurons. However, currently available protocols result in a highly variable yield of dopaminergic neurons depending on the source of hiPSCs. We have now developed a protocol based on HBA promoter-driven transient expression of transcription factors by means of adeno-associated viral (AAV) vectors, that allowed to generate very consistent numbers of dopaminergic neurons from four different human iPSC lines. We also demonstrate that AAV vectors expressing reporter genes from a neuron-specific hSyn1 promoter can serve as surrogate markers for maturation of hiPSC-derived dopaminergic neurons. Dopaminergic neurons differentiated by transcription factor expression showed aggravated neurodegeneration through α-synuclein overexpression, but were not sensitive to γ-synuclein overexpression, suggesting that these neurons are well suited to study neurodegeneration in the context of Parkinson’s disease.
Collapse
|
17
|
Ling TK, Law CY, Yan KW, Fong NC, Wong KC, Lee KL, Chu WCW, Brea-Calvo G, Lam CW. Clinical whole-exome sequencing reveals a common pathogenic variant in patients with CoQ10 deficiency: An underdiagnosed cause of mitochondriopathy. Clin Chim Acta 2019; 497:88-94. [DOI: 10.1016/j.cca.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 12/17/2022]
|
18
|
Bueno C, Calero-Nieto FJ, Wang X, Valdés-Mas R, Gutiérrez-Agüera F, Roca-Ho H, Ayllon V, Real PJ, Arambilet D, Espinosa L, Torres-Ruiz R, Agraz-Doblas A, Varela I, de Boer J, Bigas A, Gottgens B, Marschalek R, Menendez P. Enhanced hemato-endothelial specification during human embryonic differentiation through developmental cooperation between AF4-MLL and MLL-AF4 fusions. Haematologica 2019; 104:1189-1201. [PMID: 30679325 PMCID: PMC6545840 DOI: 10.3324/haematol.2018.202044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The t(4;11)(q21;q23) translocation is associated with high-risk infant pro-B-cell acute lymphoblastic leukemia and arises prenatally during embryonic/fetal hematopoiesis. The developmental/pathogenic contribution of the t(4;11)-resulting MLL-AF4 (MA4) and AF4-MLL (A4M) fusions remains unclear; MA4 is always expressed in patients with t(4;11)+ B-cell acute lymphoblastic leukemia, but the reciprocal fusion A4M is expressed in only half of the patients. Because prenatal leukemogenesis manifests as impaired early hematopoietic differentiation, we took advantage of well-established human embryonic stem cell-based hematopoietic differentiation models to study whether the A4M fusion cooperates with MA4 during early human hematopoietic development. Co-expression of A4M and MA4 strongly promoted the emergence of hemato-endothelial precursors, both endothelial- and hemogenic-primed. Double fusion-expressing hemato-endothelial precursors specified into significantly higher numbers of both hematopoietic and endothelial-committed cells, irrespective of the differentiation protocol used and without hijacking survival/proliferation. Functional analysis of differentially expressed genes and differentially enriched H3K79me3 genomic regions by RNA-sequencing and H3K79me3 chromatin immunoprecipitation-sequencing, respectively, confirmed a hematopoietic/endothelial cell differentiation signature in double fusion-expressing hemato-endothelial precursors. Importantly, chromatin immunoprecipitation-sequencing analysis revealed a significant enrichment of H3K79 methylated regions specifically associated with HOX-A cluster genes in double fusion-expressing differentiating hematopoietic cells. Overall, these results establish a functional and molecular cooperation between MA4 and A4M fusions during human hematopoietic development.
Collapse
Affiliation(s)
- Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Fernando J Calero-Nieto
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | - Xiaonan Wang
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | | | - Francisco Gutiérrez-Agüera
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Veronica Ayllon
- GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government and University of Granada, Department of Biochemistry and Molecular Biology, Granada, Spain
| | - Pedro J Real
- GENyO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government and University of Granada, Department of Biochemistry and Molecular Biology, Granada, Spain
| | - David Arambilet
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
| | - Lluis Espinosa
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Raul Torres-Ruiz
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Jasper de Boer
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anna Bigas
- Programa de Cáncer, Instituto Hospital del Mar de Investigaciones Médicas. Barcelona. Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Bertie Gottgens
- Department of Hematology, Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, UK
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt, Germany
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Anderson RH, Francis KR. Modeling rare diseases with induced pluripotent stem cell technology. Mol Cell Probes 2018; 40:52-59. [PMID: 29307697 PMCID: PMC6033695 DOI: 10.1016/j.mcp.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Rare diseases, in totality, affect a significant proportion of the population and represent an unmet medical need facing the scientific community. However, the treatment of individuals affected by rare diseases is hampered by poorly understood mechanisms preventing the development of viable therapeutics. The discovery and application of cellular reprogramming to create novel induced pluripotent stem cell models of rare diseases has revolutionized the rare disease community. Through developmental and functional analysis of differentiated cell types, these stem cell models carrying patient-specific mutations have become an invaluable tool for rare disease research. In this review article, we discuss the reprogramming of samples from individuals affected with rare diseases to induced pluripotent stem cells, current and future applications for this technology, and how integration of genome editing to rare disease research will help to improve our understanding of disease pathogenesis and lead to patient therapies.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
20
|
Coenzyme Q 10 deficiencies: pathways in yeast and humans. Essays Biochem 2018; 62:361-376. [PMID: 29980630 PMCID: PMC6056717 DOI: 10.1042/ebc20170106] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
Coenzyme Q (ubiquinone or CoQ) is an essential lipid that plays a role in mitochondrial respiratory electron transport and serves as an important antioxidant. In human and yeast cells, CoQ synthesis derives from aromatic ring precursors and the isoprene biosynthetic pathway. Saccharomyces cerevisiae coq mutants provide a powerful model for our understanding of CoQ biosynthesis. This review focusses on the biosynthesis of CoQ in yeast and the relevance of this model to CoQ biosynthesis in human cells. The COQ1–COQ11 yeast genes are required for efficient biosynthesis of yeast CoQ. Expression of human homologs of yeast COQ1–COQ10 genes restore CoQ biosynthesis in the corresponding yeast coq mutants, indicating profound functional conservation. Thus, yeast provides a simple yet effective model to investigate and define the function and possible pathology of human COQ (yeast or human gene involved in CoQ biosynthesis) gene polymorphisms and mutations. Biosynthesis of CoQ in yeast and human cells depends on high molecular mass multisubunit complexes consisting of several of the COQ gene products, as well as CoQ itself and CoQ intermediates. The CoQ synthome in yeast or Complex Q in human cells, is essential for de novo biosynthesis of CoQ. Although some human CoQ deficiencies respond to dietary supplementation with CoQ, in general the uptake and assimilation of this very hydrophobic lipid is inefficient. Simple natural products may serve as alternate ring precursors in CoQ biosynthesis in both yeast and human cells, and these compounds may act to enhance biosynthesis of CoQ or may bypass certain deficient steps in the CoQ biosynthetic pathway.
Collapse
|
21
|
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet 2018; 391:2560-2574. [PMID: 29903433 DOI: 10.1016/s0140-6736(18)30727-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic bioenergetic organelles whose maintenance requires around 1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homoeostatic functions. Mitochondrial diseases represent one of the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and absence of disease-modifying curative therapies. This Review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread use of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets for therapeutic intervention. As we enter this new era of mitochondrial medicine, underpinned by global unbiased approaches and multifaceted investigation of mitochondrial function, omics technologies will continue to shed light on unresolved mitochondrial questions, paving the way for improved outcomes for patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
22
|
Rodenburg RJ. The functional genomics laboratory: functional validation of genetic variants. J Inherit Metab Dis 2018; 41:297-307. [PMID: 29445992 PMCID: PMC5959958 DOI: 10.1007/s10545-018-0146-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Currently, one of the main challenges in human molecular genetics is the interpretation of rare genetic variants of unknown clinical significance. A conclusive diagnosis is of importance for the patient to obtain certainty about the cause of the disease, for the clinician to be able to provide optimal care to the patient and to predict the disease course, and for the clinical geneticist for genetic counseling of the patient and family members. Conclusive evidence for pathogenicity of genetic variants is therefore crucial. This review gives an introduction to the problem of the interpretation of genetic variants of unknown clinical significance in view of the recent advances in genetic screening, and gives an overview of the possibilities for functional tests that can be performed to answer questions about the function of genes and the functional consequences of genetic variants ("functional genomics") in the field of inborn errors of metabolism (IEM), including several examples of functional genomics studies of mitochondrial disorders and several other IEM.
Collapse
Affiliation(s)
- Richard J Rodenburg
- Radboudumc, Radboud Center for Mitochondrial Medicine, 774 Translational Metabolic Laboratory, Department of Pediatrics, PO Box 9101, 6500HB, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Zhang C, Quan R, Wang J. Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet 2018; 27:R79-R88. [DOI: 10.1093/hmg/ddy120] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Renfu Quan
- Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, Zhejiang, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|