1
|
Liu L, Zhang L, Li C, Qiu Z, Kuang T, Wu Z, Deng W. Effects of hormones on intestinal stem cells. Stem Cell Res Ther 2023; 14:105. [PMID: 37101229 PMCID: PMC10134583 DOI: 10.1186/s13287-023-03336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
The maintenance of intestinal renewal and repair mainly depends on intestinal stem cells (ISCs), which can also contribute to the growth of intestinal tumours. Hormones, which are vital signalling agents in the body, have various effects on the growth and replacement of intestinal stem cells. This review summarises recent progress in the identification of hormones associated with intestinal stem cells. Several hormones, including thyroid hormone, glucagon-like peptide-2, androgens, insulin, leptin, growth hormone, corticotropin-releasing hormone and progastrin, promote the development of intestinal stem cells. However, somatostatin and melatonin are two hormones that prevent the proliferation of intestinal stem cells. Therefore, new therapeutic targets for the diagnosis and treatment of intestinal illnesses can be identified by examining the impact of hormones on intestinal stem cells.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongkai Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the amphibian intestine during metamorphosis. VITAMINS AND HORMONES 2023; 122:1-22. [PMID: 36863790 DOI: 10.1016/bs.vh.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the amphibian intestine during metamorphosis, most of the larval epithelial cells undergo apoptosis, while a small number of the epithelial cells dedifferentiate into stem cells (SCs). The SCs actively proliferate and then newly generate the adult epithelium analogous to the mammalian counterpart, which is continuously renewed from the SCs throughout adulthood. This larval-to-adult intestinal remodeling can be experimentally induced by thyroid hormone (TH) through interacting with the surrounding connective tissue that develops as the stem cell niche. Thus, the amphibian intestine provides us a valuable opportunity to study how the SCs and their niche are formed during development. To clarify the TH-induced and evolutionally conserved mechanism of SC development at the molecular level, numerous TH response genes have been identified in the Xenopus laevis intestine over the last three decades and extensively analyzed for their expression and function by using wild-type and transgenic Xenopus tadpoles. Interestingly, accumulating evidence indicates that thyroid hormone receptor (TR) epigenetically regulates the expression of TH response genes involved in the remodeling. In this review, we highlight recent progress in the understanding of SC development, focusing on epigenetic gene regulation by TH/TR signaling in the X. laevis intestine. We here propose that two subtypes of TRs, TRα and TRβ, play distinct roles in the intestinal SC development via different histone modifications in different cell types.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Tokyo, Japan.
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
3
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Essential roles of YAP-TEAD complex in adult stem cell development during thyroid hormone-induced intestinal remodeling of Xenopus laevis. Cell Tissue Res 2022; 388:313-329. [PMID: 35211820 DOI: 10.1007/s00441-022-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
During amphibian metamorphosis which is triggered by thyroid hormone (TH), the small intestine is extensively remodeled from the larval to adult form. In the Xenopus laevis intestine, some of the larval epithelial cells dedifferentiate into adult stem cells, which newly form the adult epithelium similar to the mammalian one. We have previously shown that TH-activated Shh, Wnt and Notch signaling pathways play important roles in adult epithelial development. Here we focus on the Hippo signaling pathway, which is known to interact with these pathways in the mammalian intestine. Our quantitative RT-PCR analysis indicates that the expression of genes involved in this pathway including YAP1, TAZ, TEAD1 and core kinases is differently regulated by TH in the metamorphosing intestine. Additionally, we show by in situ hybridization and immunohistochemistry that the transcriptional co-activator YAP1, a major effector of the Hippo signaling, is expressed in the adult stem cells and connective tissue cells surrounding them and that YAP1 protein is localized in either nucleus or cytoplasm of the stem cells. We further show that YAP1 binds its binding partner TEAD1 (transcription factor) in vivo and that their interaction is inhibited by verteporfin (VP). More importantly, by using VP in organ culture of the tadpole intestine, we experimentally demonstrate that the inhibition of YAP1-TEAD1 interaction decreases both TH-induced stem cells expressing LGR5 and nearby connective tissue cells in number and proliferation, leading to the failure of adult epithelial development. Our results indicate that YAP-TEAD complex is required for stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| |
Collapse
|
4
|
Shi YB, Shibata Y, Tanizaki Y, Fu L. The development of adult intestinal stem cells: Insights from studies on thyroid hormone-dependent anuran metamorphosis. VITAMINS AND HORMONES 2021; 116:269-293. [PMID: 33752821 DOI: 10.1016/bs.vh.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vertebrates organ development often takes place in two phases: initial formation and subsequent maturation into the adult form. This is exemplified by the intestine. In mouse, the intestine at birth has villus, where most differentiated epithelial cells are located, but lacks any crypts, where adult intestinal stem cells reside. The crypt is formed during the first 3 weeks after birth when plasma thyroid hormone (T3) levels are high. Similarly, in anurans, the intestine undergoes drastic remodeling into the adult form during metamorphosis in a process completely dependent on T3. Studies on Xenopus metamorphosis have revealed important clues on the formation of the adult intestine during metamorphosis. Here we will review our current understanding on how T3 induces the degeneration of larval epithelium and de novo formation of adult intestinal stem cells. We will also discuss the mechanistic conservations in intestinal development between anurans and mammals.
Collapse
Affiliation(s)
- Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
5
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling. Sci Rep 2020; 10:20715. [PMID: 33244068 PMCID: PMC7693326 DOI: 10.1038/s41598-020-77817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023] Open
Abstract
In the Xenopus laevis intestine during metamorphosis, stem cells appear and generate the adult epithelium analogous to the mammalian one. We have previously shown that connective tissue cells surrounding the epithelium are essential for the stem cell development. To clarify whether such cells correspond to mammalian Foxl1-expressing mesenchymal cells, which have recently been shown to be a critical component of intestinal stem cell niche, we here examined the expression profile of Foxl1 in the X. laevis intestine by using RT-PCR and immunohistochemistry. Foxl1 expression was transiently upregulated only in connective tissue cells during the early period of metamorphic climax and was the highest just beneath the proliferating stem/progenitor cells. In addition, electron microscopic analysis showed that these subepithelial cells are ultrastructurally identified as telocytes like the mammalian Foxl1-expressing cells. Furthermore, we experimentally showed that Foxl1 expression is indirectly upregulated by thyroid hormone (TH) through Shh signaling and that TH organ-autonomously induces the Foxl1-expressing cells concomitantly with appearance of the stem cells in the tadpole intestine in vitro. The present results suggest that intestinal niche cells expressing Foxl1 are evolutionally conserved among terrestrial vertebrates and can be induced by TH/Shh signaling during amphibian metamorphosis for stem cell development.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
6
|
Diverse Roles for Hyaluronan and Hyaluronan Receptors in the Developing and Adult Nervous System. Int J Mol Sci 2020; 21:ijms21175988. [PMID: 32825309 PMCID: PMC7504301 DOI: 10.3390/ijms21175988] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid (HA) plays a vital role in the extracellular matrix of neural tissues. Originally thought to hydrate tissues and provide mechanical support, it is now clear that HA is also a complex signaling molecule that can regulate cell processes in the developing and adult nervous systems. Signaling properties are determined by molecular weight, bound proteins, and signal transduction through specific receptors. HA signaling regulates processes such as proliferation, differentiation, migration, and process extension in a variety of cell types including neural stem cells, neurons, astrocytes, microglia, and oligodendrocyte progenitors. The synthesis and catabolism of HA and the expression of HA receptors are altered in disease and influence neuroinflammation and disease pathogenesis. This review discusses the roles of HA, its synthesis and breakdown, as well as receptor expression in neurodevelopment, nervous system function and disease.
Collapse
|
7
|
Hasebe T, Fujimoto K, Buchholz DR, Ishizuya-Oka A. Stem cell development involves divergent thyroid hormone receptor subtype expression and epigenetic modifications in the Xenopus metamorphosing intestine. Gen Comp Endocrinol 2020; 292:113441. [PMID: 32084349 DOI: 10.1016/j.ygcen.2020.113441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Abstract
In the intestine during metamorphosis of the frog Xenopus laevis, most of the larval epithelial cells are induced to undergo apoptosis by thyroid hormone (TH), and under continued TH action, the remaining epithelial cells dedifferentiate into stem cells (SCs), which then newly generate an adult epithelium analogous to the mammalian intestinal epithelium. Previously, we have shown that the precursors of the SCs that exist in the larval epithelium as differentiated absorptive cells specifically express receptor tyrosine kinase-like orphan receptor 2 (Ror2). By using Ror2 as a marker, we have immunohistochemically shown here that these SC precursors, but not the larval epithelial cells destined to die by apoptosis, express TH receptor α (TRα). Upon initiation of TH-dependent remodeling, TRα expression remains restricted to the SCs as well as proliferating adult epithelial primordia derived from them. As intestinal folds form, TRα expression becomes localized in the trough of the folds where the SCs reside. In contrast, TRβ expression is transiently up-regulated in the entire intestine concomitantly with the increase of endogenous TH levels and is most highly expressed in the developing adult epithelial primordia. Moreover, we have shown here that global histone H4 acetylation is enhanced in the SC precursors and adult primordia including the SCs, while tri-methylation of histone H3 lysine 27 is lacking in those cells during metamorphosis. Our results strongly suggest distinct roles of TRα and TRβ in the intestinal larval-to-adult remodeling, involving distinctive epigenetic modifications in the SC lineage.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, Kyonan-cho, Musashino, Tokyo, Japan.
| |
Collapse
|
8
|
Kou L, Sun R, Xiao S, Zheng Y, Chen Z, Cai A, Zheng H, Yao Q, Ganapathy V, Chen R. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26722-26730. [PMID: 31276364 DOI: 10.1021/acsami.9b09784] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An effective steady-state redox balance is maintained in cancer cells, allowing for protection against oxidative stress and thereby enhancing cell proliferation and tumor growth. Disruption of this redox balance would increase the cellular content of reactive oxygen species (ROS) and potentiate oxidative stress-induced cell death in tumor cells, thus representing an effective strategy for cancer treatment. Glutathione (GSH) is a major reducing agent, and its cellular levels are determined at least partly by the availability of cysteine via xCT (SLC7A11)-mediated entry of cystine into cells. We developed a nanoplatform using ZnO nanoparticles (NPs) as a carrier, loaded with salicylazosulfapyridine (SASP), and stabilized with DSPE-PEG, to form ultra-small NPs (SASP/ZnO NPs). The goal of this NP strategy is to disrupt the redox balance in cells by two mechanisms: increased generation of ROS and decreased synthesis of GSH. Such an approach would be effective in killing tumor cells. As expected, the SASP/ZnO NPs enhanced ROS production because of ZnO and impaired GSH synthesis because of SASP-induced inhibition of xCT (SLC7A11) transport function. As a consequence, treatment of tumor cells with SASP/ZnO NPs in vitro and in vivo resulted in a synergistic disruptive effect on redox balance in tumor cells and induced cell death and decreased tumor growth. This ambidextrous approach has potential in cancer therapy by combining two complementary pathways to disrupt the redox balance in tumor cells.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
- Department of Cell Biology and Biochemistry, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Rui Sun
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Shuyi Xiao
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Yawen Zheng
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Zhiwei Chen
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Aimin Cai
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Hailun Zheng
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Qing Yao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, School of Medicine , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Ruijie Chen
- Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| |
Collapse
|
9
|
Han S, Huang T, Li W, Wang X, Wu X, Liu S, Yang W, Shi Q, Li H, Hou F. Prognostic Value of CD44 and Its Isoforms in Advanced Cancer: A Systematic Meta-Analysis With Trial Sequential Analysis. Front Oncol 2019; 9:39. [PMID: 30788285 PMCID: PMC6372530 DOI: 10.3389/fonc.2019.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Cancer stem cell marker CD44 and its variant isoforms (CD44v) may be correlated with tumor growth, metastasis, and chemo-radiotherapy resistance. However, the prognostic power of CD44 and CD44v in advanced cancer remains controversial. Therefore, the purpose of our study was to generalize the prognostic significance of these cancer stem cell markers in advanced cancer patients. Methods: Hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated from multivariable analysis to assess the associations among CD44, CD44v6, and CD44v9 positivity and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), and recurrence-free survival (RFS). Trial sequential analysis (TSA) was also conducted. Results: We included 15 articles that reported on 1,201 patients with advanced cancer (CD44: nine studies with 796 cases, CD44v6: three studies with 143 cases, and CD44v9: three studies with 262 cases). CD44 expression was slightly linked to worse OS (HR = 2.03, P = 0.027), but there was no correlation between CD44 expression and DFS, RFS, or PFS. Stratified analysis showed that CD44 expression was not correlated with OS at ≥5 years or OS in patients receiving adjuvant therapy. CD44v6 expression was not associated with OS. CD44v9 expression was closely associated with poor 5-years CSS in patients treated with chemo/radiotherapy (HR = 3.62, P < 0.001). However, TSA suggested that additional trials were needed to confirm these conclusions. Conclusions: CD44 or CD44v9 might be novel therapeutic targets for improving the treatment of advanced cancer patients. Additional prospective clinical trials are strongly needed across different cancer types.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wen Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjia Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Fujimoto K, Hasebe T, Kajita M, Ishizuya-Oka A. Expression of hyaluronan synthases upregulated by thyroid hormone is involved in intestinal stem cell development during Xenopus laevis metamorphosis. Dev Genes Evol 2018; 228:267-273. [PMID: 30430240 DOI: 10.1007/s00427-018-0623-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
During amphibian intestinal remodeling, thyroid hormone (TH) induces adult stem cells, which newly generate the absorptive epithelium analogous to the mammalian one. We have previously shown that hyaluronan (HA) is newly synthesized and plays an essential role in the development of the stem cells via its major receptor CD44 in the Xenopus laevis intestine. We here focused on HA synthase (HAS) and examined how the expression of HAS family genes is regulated during natural and TH-induced metamorphosis. Our quantitative RT-PCR analysis indicated that the mRNA expression of HAS2 and HAS3, but not that of HAS1 and HAS-rs, a unique Xenopus HAS-related sequence, is upregulated concomitantly with the development of adult epithelial primordia consisting of the stem/progenitor cells during the metamorphic climax. In addition, our in situ hybridization analysis indicated that the HAS3 mRNA is specifically expressed in the adult epithelial primordia, whereas HAS2 mRNA is expressed in both the adult epithelial primordia and nearby connective tissue cells during this period. Furthermore, by treating X. laevis tadpoles with 4-methylumbelliferone, a HA synthesis inhibitor, we have experimentally shown that inhibition of HA synthesis leads to suppression of TH-upregulated expression of leucine-rich repeat-containing G protein-coupled 5 (LGR5), an intestinal stem cell marker, CD44, HAS2, HAS3, and gelatinase A in vivo. These findings suggest that HA newly synthesized by HAS2 and/or HAS3 is required for intestinal stem cell development through a positive feedback loop and is involved in the formation of the stem cell niche during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Mitsuko Kajita
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa, 211-8533, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| |
Collapse
|
11
|
Yang F, Ma H, Butler MR, Ding XQ. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice. FASEB J 2018; 32:fj201800484RR. [PMID: 29874126 PMCID: PMC6181634 DOI: 10.1096/fj.201800484rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormone (TH) signaling has been shown to regulate cone photoreceptor viability. Suppression of TH signaling with antithyroid drug treatment or by targeting iodothyronine deiodinases and TH receptors preserves cones in mouse models of retinal degeneration, including the Leber congenital amaurosis Rpe65-deficient mice. This work investigates the cellular mechanisms underlying how suppressing TH signaling preserves cones in Rpe65-deficient mice, using mice deficient in type 2 iodothyronine deiodinase (Dio2), the enzyme that converts the prohormone thyroxine to the active hormone triiodothyronine (T3). Deficiency of Dio2 improved cone survival and function in Rpe65-/- and Rpe65-deficiency on a cone dominant background ( Rpe65-/-/ Nrl-/-) mice. Analysis of cell death pathways revealed that receptor-interacting serine/threonine-protein kinase (RIPK)/necroptosis activity was increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency reversed the alterations. Cell-stress analysis showed that the cellular oxidative stress responses were increased in Rpe65-/-/ Nrl-/- retinas, and Dio2 deficiency abolished the elevations. Similarly, antithyroid drug treatment resulted in reduced RIPK/necroptosis activity and oxidative stress responses in Rpe65-/-/ Nrl-/- retinas. Moreover, treatment with T3 significantly induced RIPK/necroptosis activity and oxidative stress responses in the retina. This work shows that suppression of TH signaling reduces cellular RIPK/necroptosis activity and oxidative stress responses in degenerating retinas, suggesting a mechanism underlying the observed cone preservation.-Yang, F., Ma, H., Butler, M. R., Ding, X.-Q. Deficiency of type 2 iodothyronine deiodinase reduces necroptosis activity and oxidative stress responses in retinas of Leber congenital amaurosis model mice.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|