1
|
Ge MM, Chen N, Zhou YQ, Yang H, Tian YK, Ye DW. Galectin-3 in Microglia-Mediated Neuroinflammation: Implications for Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:2066-2080. [PMID: 35105290 PMCID: PMC9886847 DOI: 10.2174/1570159x20666220201094547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/27/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is one of the common hallmarks shared by various central nervous system (CNS) diseases. Based on surrounding circumstances, activated microglia play either detrimental or neuroprotective effects. Galectin-3 (Gal-3), a group of β-galactoside-binding proteins, has been cumulatively revealed to be a crucial biomarker for microglial activation after injuries or diseases. In consideration of the important role of Gal-3 in the regulation of microglial activation, it might be a potential target for the treatment of CNS diseases. Recently, Gal-3 expression has been extensively investigated in numerous pathological processes as a mediator of neuroinflammation, as well as in cell proliferation. However, the underlying mechanisms of Gal-3 involved in microgliamediated neuroinflammation in various CNS diseases remain to be further investigated. Moreover, several clinical studies support that the levels of Gal-3 are increased in the serum or cerebrospinal fluid of patients with CNS diseases. Thus, we summarized the roles and underlying mechanisms of Gal-3 in activated microglia, thus providing a better insight into its complexity expression pattern, and contrasting functions in CNS diseases.
Collapse
Affiliation(s)
- Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Nan Chen
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ,Address correspondence to these authors at the Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. E-mail: ., Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail:
| | - Da-Wei Ye
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; ,Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China,Address correspondence to these authors at the Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. E-mail: ., Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail:
| |
Collapse
|
2
|
Zhang ZR, Wu Y, Wang WJ, Wang FY. The Effect of GABAergic Cells Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review With Meta-Analysis. Front Neurol 2022; 13:900436. [PMID: 35860495 PMCID: PMC9289294 DOI: 10.3389/fneur.2022.900436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
The role of GABAergic cell transplantation in improving neuropathic pain is controversial. We comprehensively searched the relevant literature to identify animal studies of GABAergic cell transplantation that recorded pain behaviors as an outcome according to the Cochrane Handbook 5.0.2. Controlled studies assessing the administration of GABAergic neurons or GABAergic neuronal progenitor cells to rat or mouse neuropathic pain animal models were included. Basic design information and mechanical allodynia thresholds and heat hyperalgesia thresholds data were collected. The risk of bias for the animal experiments was assessed according to the SYRCLE's tool. This study included 10 full-text articles. GABAergic cells transplantation leads to a statistically significant improvement of allodynia (SMD = 5.26; 95% confidence interval: 3.02-7.51; P < 0.001) and hyperalgesia (SMD: 4.10; 95% confidence interval: 1.84-6.35; P < 0.001). Differentiated GABAergic cells and without antibiotics using may have a better effect for improving neuropathic pain. GABAergic cell transplantation is a promising treatment for improving neuropathic pain. This systematic review and meta-analysis evaluated the effects of GABAergic cell transplantation on neuropathic pain, which can guide future clinical trials and possible clinical treatments, and better attenuate neuropathic pain caused by abnormal circuit hyperexcitability.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Yao Wu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wen-Jing Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Fang-Yong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
3
|
Askarian-Amiri S, Maleki SN, Alavi SNR, Neishaboori AM, Toloui A, Gubari MIM, Sarveazad A, Hosseini M, Yousefifard M. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis. Korean J Pain 2022; 35:43-58. [PMID: 34966011 PMCID: PMC8728544 DOI: 10.3344/kjp.2022.35.1.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Current therapies are quite unsuccessful in the management of neuropathic pain. Therefore, considering the inhibitory characteristics of GABA mediators, the present systematic review and meta-analysis aimed to determine the efficacy of GABAergic neural precursor cells on neuropathic pain management. Methods Search was conducted on Medline, Embase, Scopus, and Web of Science databases. A search strategy was designed based on the keywords related to GABAergic cells combined with neuropathic pain. The outcomes were allodynia and hyperalgesia. The results were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results Data of 13 studies were analyzed in the present meta-analysis. The results showed that administration of GABAergic cells improved allodynia (SMD = 1.79; 95% CI 0.87, 271; P < 0.001) and hyperalgesia (SMD = 1.29; 95% CI 0.26, 2.32; P = 0.019). Moreover, the analyses demonstrated that the efficacy of GABAergic cells in the management of allodynia and hyperalgesia is only observed in rats. Also, only genetically modified cells are effective in improving both of allodynia, and hyperalgesia. Conclusions A moderate level of pre-clinical evidence showed that transplantation of genetically-modified GABAergic cells is effective in the management of neuropathic pain. However, it seems that the transplantation efficacy of these cells is only statistically significant in improving pain symptoms in rats. Hence, caution should be exercised regarding the generalizability and the translation of the findings from rats and mice studies to large animal studies and clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammed I M Gubari
- Department of Family and Community Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
5
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Hwang K, Jung K, Kim IS, Kim M, Han J, Lim J, Shin JE, Jang JH, Park KI. Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury. Exp Neurobiol 2019; 28:679-696. [PMID: 31902156 PMCID: PMC6946112 DOI: 10.5607/en.2019.28.6.679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) causes axonal damage and demyelination, neural cell death, and comprehensive tissue loss, resulting in devastating neurological dysfunction. Neural stem/progenitor cell (NSPCs) transplantation provides therapeutic benefits for neural repair in SCI, and glial cell linederived neurotrophic factor (GDNF) has been uncovered to have capability of stimulating axonal regeneration and remyelination after SCI. In this study, to evaluate whether GDNF would augment therapeutic effects of NSPCs for SCI, GDNF-encoding or mock adenoviral vector-transduced human NSPCs (GDNF-or Mock-hNSPCs) were transplanted into the injured thoracic spinal cords of rats at 7 days after SCI. Grafted GDNFhNSPCs showed robust engraftment, long-term survival, an extensive distribution, and increased differentiation into neurons and oligodendroglial cells. Compared with Mock-hNSPC- and vehicle-injected groups, transplantation of GDNF-hNSPCs significantly reduced lesion volume and glial scar formation, promoted neurite outgrowth, axonal regeneration and myelination, increased Schwann cell migration that contributed to the myelin repair, and improved locomotor recovery. In addition, tract tracing demonstrated that transplantation of GDNF-hNSPCs reduced significantly axonal dieback of the dorsal corticospinal tract (dCST), and increased the levels of dCST collaterals, propriospinal neurons (PSNs), and contacts between dCST collaterals and PSNs in the cervical enlargement over that of the controls. Finally grafted GDNF-hNSPCs substantially reversed the increased expression of voltage-gated sodium channels and neuropeptide Y, and elevated expression of GABA in the injured spinal cord, which are involved in the attenuation of neuropathic pain after SCI. These findings suggest that implantation of GDNF-hNSPCs enhances therapeutic efficiency of hNSPCs-based cell therapy for SCI.
Collapse
Affiliation(s)
- Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kwangsoo Jung
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jungho Han
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joohee Lim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Kook In Park
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019; 377:125-151. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Axonal regeneration and formation of tripartite (axo-glial) junctions at damaged sites is a prerequisite for early repair of injured spinal cord. Transplantation of stem cells at such sites of damage which can generate both neuronal and glial population has gained impact in terms of recuperation upon infliction with spinal cord injury. In spite of the fact that a copious number of pre-clinical studies using different stem/progenitor cells have shown promising results at acute and subacute stages, at the chronic stages of injury their recovery rates have shown a drastic decline. Therefore, developing novel therapeutic strategies are the need of the hour in order to assuage secondary morbidity and effectuate improvement of the spinal cord injury (SCI)-afflicted patients' quality of life. The present review aims at providing an overview of the current treatment strategies and also gives an insight into the potential cell-based therapies for the treatment of SCI.
Collapse
|
8
|
White N, Sakiyama-Elbert SE. Derivation of Specific Neural Populations From Pluripotent Cells for Understanding and Treatment of Spinal Cord Injury. Dev Dyn 2019; 248:78-87. [PMID: 30324766 PMCID: PMC6640631 DOI: 10.1002/dvdy.24680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the nature of the biological response to traumatic spinal cord injury, there are very limited therapeutic options available to patients. Recent advances in cell transplantation have demonstrated the therapeutic potential of transplanting supportive cell types following spinal cord injury. In particular, pluripotent stem cell derived neural cells are of interest for future investigation. Use of pluripotent stem cells as the source allows many cell types to be produced from a population that can be expanded in vitro. In this review, we will discuss the signaling pathways that have been used to differentiate spinal neural phenotypes from pluripotent stem cells. Additionally, we will highlight methods that have been developed to direct the differentiation of pluripotent stem cells to specific neural fates. Further refinement and elaboration of these techniques might aid in elucidating the multitude of neuronal subtypes endogenous to the spinal cord, as well as produce further therapeutic options for spinal cord injury recovery. Developmental Dynamics 248:78-87, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas White
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
9
|
Okubo T, Nagoshi N, Kohyama J, Tsuji O, Shinozaki M, Shibata S, Kase Y, Matsumoto M, Nakamura M, Okano H. Treatment with a Gamma-Secretase Inhibitor Promotes Functional Recovery in Human iPSC- Derived Transplants for Chronic Spinal Cord Injury. Stem Cell Reports 2018; 11:1416-1432. [PMID: 30503258 PMCID: PMC6294244 DOI: 10.1016/j.stemcr.2018.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
Treatment involving regenerative medicine for chronic spinal cord injury (SCI) is difficult due to phase-dependent changes in the intraspinal environment. We previously reported that treatment with a gamma-secretase inhibitor (GSI), which inhibits Notch signaling, promotes the differentiation into mature neurons in human induced pluripotent stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) transplantation for subacute SCI. Here, we evaluated the efficacy of GSI-treated hiPSC-NS/PC transplantation in treating chronic SCI, which resulted in significantly enhanced axonal regrowth, remyelination, inhibitory synapse formation with the host neural circuitry, and reticulo spinal tract fiber formation. Interestingly, inhibiting Notch signaling with GSI caused phosphorylation of p38 MAPK, which is a key molecule required to promote axonal regeneration. These favorable outcomes contributed to motor function improvement. Therefore, treating cells with GSI provides a beneficial effect after transplantation, even in the chronic phase following SCI. GSI-treated hiPSC-NS/PCs induce regenerative axons and extension of RtST fibers GSI-treated hiPSC-NS/PCs induce remyelination by host-derived glial cells GSI causes phosphorylation of p38 MAPK and promotes axonal regeneration Grafts of GSI-treated hiPSC-NS/PCs provide a beneficial effect in the chronic SCI
Collapse
Affiliation(s)
- Toshiki Okubo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Electron Microscope Laboratory, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
10
|
Recombinant neural progenitor transplants in the spinal dorsal horn alleviate chronic central neuropathic pain. Pain 2017; 157:977-989. [PMID: 26761378 DOI: 10.1097/j.pain.0000000000000471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuropathic pain induced by spinal cord injury (SCI) is clinically challenging with inadequate long-term treatment options. Partial pain relief offered by pharmacologic treatment is often counterbalanced by adverse effects after prolonged use in chronic pain patients. Cell-based therapy for neuropathic pain using GABAergic neuronal progenitor cells (NPCs) has the potential to overcome untoward effects of systemic pharmacotherapy while enhancing analgesic potency due to local activation of GABAergic signaling in the spinal cord. However, multifactorial anomalies underlying chronic pain will likely require simultaneous targeting of multiple mechanisms. Here, we explore the analgesic potential of genetically modified rat embryonic GABAergic NPCs releasing a peptidergic NMDA receptor antagonist, Serine-histogranin (SHG), thus targeting both spinal hyperexcitability and reduced inhibitory processes. Recombinant NPCs were designed using either lentiviral or adeno-associated viral vectors (AAV2/8) encoding single and multimeric (6 copies of SHG) cDNA. Intraspinal injection of recombinant cells elicited enhanced analgesic effects compared with nonrecombinant NPCs in SCI-induced pain in rats. Moreover, potent and sustained antinociception was achieved, even after a 5-week postinjury delay, using recombinant multimeric NPCs. Intrathecal injection of SHG antibody attenuated analgesic effects of the recombinant grafts suggesting active participation of SHG in these antinociceptive effects. Immunoblots and immunocytochemical assays indicated ongoing recombinant peptide production and secretion in the grafted host spinal cords. These results support the potential for engineered NPCs grafted into the spinal dorsal horn to alleviate chronic neuropathic pain.
Collapse
|
11
|
Bento AR, Quelhas P, Oliveira MJ, Pêgo AP, Amaral IF. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling. J Tissue Eng Regen Med 2016; 11:3494-3507. [PMID: 28032468 DOI: 10.1002/term.2262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 12/20/2022]
Abstract
In an attempt to improve the efficacy of neural stem/progenitor cell (NSPC) based therapies, fibrin hydrogels are being explored to provide a favourable microenvironment for cell survival and differentiation following transplantation. In the present work, the ability of fibrin to support the survival, proliferation, and neuronal differentiation of NSPCs derived from embryonic stem (ES) cells under monolayer culture was explored. Single mouse ES-NSPCs were cultured within fibrin (fibrinogen concentration: 6 mg/ml) under neuronal differentiation conditions up to 14 days. The ES-NSPCs retained high cell viability and proliferated within small-sized spheroids. Neuronal differentiation was confirmed by an increase in the levels of βIII-tubulin and NF200 over time. At day 14, cell-matrix constructs mainly comprised NSPCs and neurons (46.5% βIII-tubulin+ cells). Gamma-aminobutyric acid (GABA)ergic and dopaminergic/noradrenergic neurons were also observed, along with a network of synaptic proteins. The ES-NSPCs expressed matriptase and secreted MMP-2/9, with MMP-2 activity increasing along time. Fibronectin, laminin and collagen type IV deposition was also detected. Fibrin gels prepared with higher fibrinogen concentrations (8/10 mg/ml) were less permissive to neurite extension and neuronal differentiation, possibly owing to their smaller pore area and higher rigidity. Overall, it is shown that ES-NSPCs within fibrin are able to establish neuronal networks and to remodel fibrin through MMP secretion and extracellular matrix (ECM) deposition. This three-dimensional (3D) culture system was also shown to support cell viability, neuronal differentiation and ECM deposition of human ES-NSPCs. The settled 3D platform is expected to constitute a valuable tool to develop fibrin-based hydrogels for ES-NSPC delivery into the injured central nervous system. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ana R Bento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Pedro Quelhas
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Maria J Oliveira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Departamento de Patologia e Oncologia da Faculdade de Medicina da Universidade do Porto de Medicina da Universidade do Porto, Portugal
| | - Ana P Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel F Amaral
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Portugal
| |
Collapse
|
12
|
Hwang I, Hahm SC, Choi KA, Park SH, Jeong H, Yea JH, Kim J, Hong S. Intrathecal Transplantation of Embryonic Stem Cell-Derived Spinal GABAergic Neural Precursor Cells Attenuates Neuropathic Pain in a Spinal Cord Injury Rat Model. Cell Transplant 2016; 25:593-607. [DOI: 10.3727/096368915x689460] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell–derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32- GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10–T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4–L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.
Collapse
Affiliation(s)
- Insik Hwang
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Suk-Chan Hahm
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Kyung-Ah Choi
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Chemistry, College of Science; Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sung-Ho Park
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Hyesun Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Ji-Hye Yea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Junesun Kim
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Physical Therapy, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| |
Collapse
|
13
|
Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 2015; 64:763-79. [PMID: 26712314 DOI: 10.1002/glia.22959] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/09/2023]
Abstract
The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.
Collapse
Affiliation(s)
- Paraskevi N Koutsoudaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| |
Collapse
|
14
|
Sabapathy V, Tharion G, Kumar S. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions. Stem Cells Int 2015; 2015:132172. [PMID: 26240569 PMCID: PMC4512598 DOI: 10.1155/2015/132172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu 632002, India
| | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, Tamil Nadu 632002, India
| | - Sanjay Kumar
- Centre for Stem Cell Research, Christian Medical College, Bagayam, Vellore, Tamil Nadu 632002, India
| |
Collapse
|
15
|
Abstract
Stem cell-based interventions aim to use special regenerative cells (stem cells) to facilitate neuronal function beyond the site of the injury. Many studies involving animal models of spinal cord injury (SCI) suggest that certain stem cell-based therapies may restore function after SCI. Currently, in case of spinal cord injuries, new discoveries with clinical implications have been continuously made in basic stem cell research, and stem cell-based approaches are advancing rapidly toward application in patients. There is a huge base of preclinical evidence in vitro and in animal models which suggests the safety and clinical efficacy of cellular therapies after SCI. Despite this, data from clinical studies is not very encouraging and at times confounding. Here, we have attempted to cover preclinical and clinical evidence base dealing with safety, feasibility and efficacy of cell based interventions after SCI. The limitations of preclinical data and the reasons underlying its failure to translate in a clinical setting are also discussed. Based on the evidence base, it is suggested that a multifactorial approach is required to address this situation. Need for standardized, stringently designed multi-centric clinical trials for obtaining validated proof of evidence is also highlighted.
Collapse
Affiliation(s)
- Harvinder Singh Chhabra
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India,Address for correspondence: Dr. Harvinder Singh Chhabra, Indian Spinal Injuries Centre, Sector C, Vasant Kunj, New Delhi - 110 070, India. E-mail:
| | - Kanchan Sarda
- Spine Service, Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, India
| |
Collapse
|
16
|
Liu Y, Zhou Y, Zhang C, Zhang F, Hou S, Zhong H, Huang H. Optimal time for subarachnoid transplantation of neural progenitor cells in the treatment of contusive spinal cord injury. Neural Regen Res 2014; 8:389-96. [PMID: 25206679 PMCID: PMC4146137 DOI: 10.3969/j.issn.1673-5374.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 11/18/2022] Open
Abstract
This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. O4- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for O4 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.
Collapse
Affiliation(s)
- Yan Liu
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Ying Zhou
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Chunli Zhang
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Feng Zhang
- Beijing Hongtianji Neuroscience Academy, Beijing 100144, China
| | - Shuxun Hou
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Hongbin Zhong
- Orthopedic Institute, the First Affiliated Hospital of the General Hospital of PLA, Beijing 100048, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing 100144, China
| |
Collapse
|
17
|
Adult-Derived Pluripotent Stem Cells. World Neurosurg 2014; 82:500-8. [DOI: 10.1016/j.wneu.2013.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/27/2023]
|
18
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
19
|
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:786475. [PMID: 23484157 PMCID: PMC3581246 DOI: 10.1155/2013/786475] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/16/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI), has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a "bench to bedside" gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Department of Spine Surgery, The Affiliated Hospital of Luzhou Medical College, 646000 Luzhou, China
| | - Guilherme Lepski
- Department of Neurosurgery, Eberhard Karls University, 72076 Tübingen, Germany
- Division of Neurosurgery, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, Avnida Dr. Enéas de Carvalho Aguiar 255, 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
20
|
Takikawa S, Yamamoto A, Sakai K, Shohara R, Iwase A, Kikkawa F, Ueda M. Human umbilical cord-derived mesenchymal stromal cells promote sensory recovery in a spinal cord injury rat model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.33020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ju P, Zhang S, Yeap Y, Feng Z. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury. Glia 2012; 60:1801-14. [DOI: 10.1002/glia.22398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
|
22
|
Lee JW, Jergova S, Furmanski O, Gajavelli S, Sagen J. Predifferentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury. Front Physiol 2012; 3:167. [PMID: 22754531 PMCID: PMC3385582 DOI: 10.3389/fphys.2012.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022] Open
Abstract
Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.
Collapse
Affiliation(s)
- Jeung Woon Lee
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | | | | | |
Collapse
|
23
|
Gwak YS, Hulsebosch CE. Neuronal hyperexcitability: a substrate for central neuropathic pain after spinal cord injury. Curr Pain Headache Rep 2012; 15:215-22. [PMID: 21387163 DOI: 10.1007/s11916-011-0186-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal hyperexcitability produces enhanced pain transmission in the spinal dorsal horn after spinal cord injury (SCI). Spontaneous and evoked neuronal excitability normally are well controlled by neural circuits. However, SCI produces maladaptive synaptic circuits in the spinal dorsal horn that result in neuronal hyperexcitability. After SCI, activated primary afferent neurons produce enhanced release of glutamate, neuropeptides, adenosine triphosphate, and proinflammatory cytokines, which are known to be major components for pain transmission in the spinal dorsal horn. Enhanced neurochemical events contribute to neuronal hyperexcitability, and neuroanatomical changes also contribute to maladaptive synaptic circuits and neuronal hyperexcitability. These neurochemical and neuroanatomical changes produce enhanced cellular signaling cascades that ensure persistently enhanced pain transmission. This review describes altered neurochemical and neuroanatomical contributions on neuronal hyperexcitability in the spinal dorsal horn, which serve as substrates for central neuropathic pain after SCI.
Collapse
Affiliation(s)
- Young Seob Gwak
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | |
Collapse
|
24
|
Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol 2011; 234:39-49. [PMID: 22193109 DOI: 10.1016/j.expneurol.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 02/03/2023]
Abstract
Dysfunctional γ-aminobutyric acid (GABA)-ergic inhibitory neurotransmission is hypothesized to underlie chronic neuropathic pain. Intraspinal transplantation of GABAergic neural progenitor cells (NPCs) may reduce neuropathic pain by restoring dorsal horn inhibition. Rat NPCs pre-differentiated to a GABAergic phenotype were transplanted into the dorsal horn of rats with unilateral chronic constriction injury (CCI) of the sciatic nerve. GABA signaling in antinociceptive effects of NPC grafts was tested with the GABA(A) receptor antagonist bicuculline (BIC), GABA(B) receptor antagonist CGP35348 (CGP) and GABA reuptake inhibitor SKF 89976A (SKF). NPC-treated animals showed decreased hyperalgesia and allodynia 1-3week post-transplantation; vehicle-injected CCI rats continued displaying pain behaviors. Intrathecal application of BIC or CGP attenuated the antinociceptive effects of the NPC transplants while SKF injection induced analgesia in control rats. Electrophysiological recordings in NPC treated rats showed reduced responses of wide dynamic range (WDR) neurons to peripheral stimulation compared to controls. A spinal application of BIC or CGP increased wind-up response and post-discharges of WDR neurons in NPC treated animals. Results suggest that transplantation of GABAergic NPCs attenuate pain behaviors and reduce exaggerated dorsal horn neuronal firing induced by CCI. The effects of GABA receptor inhibitors suggest participation of continuously released GABA in the grafted animals.
Collapse
Affiliation(s)
- Stanislava Jergova
- University of Miami, Miller School of Medicine, Miami Project to Cure Paralysis, 1095 NW 14 Terrace, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
25
|
Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 2011; 108:16825-30. [PMID: 21949375 DOI: 10.1073/pnas.1108077108] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Once their safety is confirmed, human-induced pluripotent stem cells (hiPSCs), which do not entail ethical concerns, may become a preferred cell source for regenerative medicine. Here, we investigated the therapeutic potential of transplanting hiPSC-derived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice to treat spinal cord injury (SCI). For this, we used a hiPSC clone (201B7), established by transducing four reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc) into adult human fibroblasts. Grafted hiPSC-NSs survived, migrated, and differentiated into the three major neural lineages (neurons, astrocytes, and oligodendrocytes) within the injured spinal cord. They showed both cell-autonomous and noncell-autonomous (trophic) effects, including synapse formation between hiPSC-NS-derived neurons and host mouse neurons, expression of neurotrophic factors, angiogenesis, axonal regrowth, and increased amounts of myelin in the injured area. These positive effects resulted in significantly better functional recovery compared with vehicle-treated control animals, and the recovery persisted through the end of the observation period, 112 d post-SCI. No tumor formation was observed in the hiPSC-NS-grafted mice. These findings suggest that hiPSCs give rise to neural stem/progenitor cells that support improved function post-SCI and are a promising cell source for its treatment.
Collapse
|