1
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|
2
|
Maddah M, Mandegar MA, Dame K, Grafton F, Loewke K, Ribeiro AJS. Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. J Pharmacol Toxicol Methods 2020; 105:106895. [PMID: 32629158 DOI: 10.1016/j.vascn.2020.106895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022]
Abstract
Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.
Collapse
Affiliation(s)
| | | | - Keri Dame
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Translational Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Asahi Y, Nomura F, Abe Y, Doi M, Sakakura T, Takasuna K, Yasuda K. Electrophysiological evaluation of pentamidine and 17-AAG in human stem cell-derived cardiomyocytes for safety assessment. Eur J Pharmacol 2019; 842:221-230. [DOI: 10.1016/j.ejphar.2018.10.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
4
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
5
|
Ghosheh N, Küppers-Munther B, Asplund A, Edsbagge J, Ulfenborg B, Andersson TB, Björquist P, Andersson CX, Carén H, Simonsson S, Sartipy P, Synnergren J. Comparative transcriptomics of hepatic differentiation of human pluripotent stem cells and adult human liver tissue. Physiol Genomics 2017; 49:430-446. [DOI: 10.1152/physiolgenomics.00007.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatocytes derived from human pluripotent stem cells (hPSC-HEP) have the potential to replace presently used hepatocyte sources applied in liver disease treatment and models of drug discovery and development. Established hepatocyte differentiation protocols are effective and generate hepatocytes, which recapitulate some key features of their in vivo counterparts. However, generating mature hPSC-HEP remains a challenge. In this study, we applied transcriptomics to investigate the progress of in vitro hepatic differentiation of hPSCs at the developmental stages, definitive endoderm, hepatoblasts, early hPSC-HEP, and mature hPSC-HEP, to identify functional targets that enhance efficient hepatocyte differentiation. Using functional annotation, pathway and protein interaction network analyses, we observed the grouping of differentially expressed genes in specific clusters representing typical developmental stages of hepatic differentiation. In addition, we identified hub proteins and modules that were involved in the cell cycle process at early differentiation stages. We also identified hub proteins that differed in expression levels between hPSC-HEP and the liver tissue controls. Moreover, we identified a module of genes that were expressed at higher levels in the liver tissue samples than in the hPSC-HEP. Considering that hub proteins and modules generally are essential and have important roles in the protein-protein interactions, further investigation of these genes and their regulators may contribute to a better understanding of the differentiation process. This may suggest novel target pathways and molecules for improvement of hPSC-HEP functionality, having the potential to finally bring this technology to a wider use.
Collapse
Affiliation(s)
- Nidal Ghosheh
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Benjamin Ulfenborg
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| | - Tommy B. Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; and
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Sartipy
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
- AstraZeneca Research and Development, Global Medicines Development Cardiovascular and Metabolic Diseases Global Medicines Development Unit, Mölndal, Sweden
| | - Jane Synnergren
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde, Sweden
| |
Collapse
|
6
|
Metrakos P, Nilsson T. Non-alcoholic fatty liver disease--a chronic disease of the 21<sup>st</sup> century. J Biomed Res 2017; 32:327-335. [PMID: 28550272 PMCID: PMC6163117 DOI: 10.7555/jbr.31.20160153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of metabolic states ranging from simple steatosis to inflammation with associated fibrosis to cirrhosis. Though accumulation of hepatic fat is not associated with a significant increase in mortality rates, hepatic inflammation is, as this augments the risk of terminal liver disease, i.e., cirrhosis, hepatic decompensation (liver failure) and/or hepatocellular carcinoma. Disease progression is usually slow, over a decade or more and, for the most part, remains asymptomatic. Recent estimates suggest that the global prevalence of NAFLD is high, about one in four. In most cases, NAFLD overlaps with overweight, obesity, cardiovascular disease and the metabolic syndrome with numerous contributing parameters including a dysregulation of adipose tissue, insulin resistance, type 2 diabetes, changes in the gut microbiome, neuronal and hormonal dysregulation and metabolic stress. NAFLD is diagnosed incidentally, despite its high prevalence. Non-invasive imaging techniques have emerged, making it possible to determine degree of steatosis as well asfibrosis. Despite this, the benefit of routine diagnostics remains uncertain. A better understanding of the (molecular) pathogenesis of NAFLD is needed combined with long-term studies where benefits of treatment can be assessed to determine cost-benefit ratios. This review summarizes the current state of knowledge and possible areas of treatment.
Collapse
Affiliation(s)
- Peter Metrakos
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| | - Tommy Nilsson
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| |
Collapse
|
7
|
Narmada BC, Goh YT, Li H, Sinha S, Yu H, Cheung C. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Transl Med 2017; 6:851-863. [PMID: 28297582 PMCID: PMC5442778 DOI: 10.5966/sctm.2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.
Collapse
Affiliation(s)
| | - Yeek Teck Goh
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
| | - Sanjay Sinha
- The Anne McLaren Laboratory of Regenerative Medicine, Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Mechanobiology Institute, Singapore
- Singapore‐MIT Alliance for Research and Technology, BioSyM, Singapore
| | - Christine Cheung
- Institute of Molecular and Cell Biology, Proteos, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells. Stem Cell Rev Rep 2016; 12:90-104. [PMID: 26385115 DOI: 10.1007/s12015-015-9621-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure. To the best of our knowledge this is the first report of a standardized hepatic differentiation procedure that is generally applicable across a large panel of hPSC lines without any adaptations to individual lines. Importantly, with regard to functional aspects, such as Cytochrome P450 activities, we observed that hepatocytes derived from different hPSC lines displayed inter-individual variation characteristic for primary hepatocytes obtained from different donors, while these activities were highly reproducible between repeated experiments using the same line. Taken together, these data demonstrate the emerging possibility to compile panels of hPSC-derived hepatocytes of particular phenotypes/genotypes relevant for drug metabolism and toxicity studies. Moreover, these findings are of significance for applications within the regenerative medicine field, since our stringent differentiation procedure allows the derivation of homogenous hepatocyte cultures from multiple donors which is a prerequisite for the realization of future personalized stem cell based therapies.
Collapse
|
9
|
Kramer N, Rosner M, Kovacic B, Hengstschläger M. Full biological characterization of human pluripotent stem cells will open the door to translational research. Arch Toxicol 2016; 90:2173-2186. [PMID: 27325309 DOI: 10.1007/s00204-016-1763-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines. Stem Cells Int 2016; 2016:8648356. [PMID: 26949401 PMCID: PMC4753346 DOI: 10.1155/2016/8648356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023] Open
Abstract
Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.
Collapse
|
11
|
Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, Coecke S, Flick B, Fowler P, Hescheler J, Ingelman-Sundberg M, Jennings P, Kelm JM, Manou I, Mistry P, Moretto A, Roth A, Stedman D, van de Water B, Beilmann M. Stem cell-derived systems in toxicology assessment. Stem Cells Dev 2015; 24:1284-96. [PMID: 25675366 DOI: 10.1089/scd.2014.0540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.
Collapse
Affiliation(s)
- Laura Suter-Dick
- 1University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Paula M Alves
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bas J Blaauboer
- 4Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Klaus-Dieter Bremm
- 5Bayer Pharma AG, Global Drug Discovery-Global Early Development, Wuppertal, Germany
| | - Catarina Brito
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra Coecke
- 6European Commission Joint Research Centre, Institute for Health and Consumer Protection, EURL ECVAM, Ispra, Italy
| | - Burkhard Flick
- 7BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Jürgen Hescheler
- 9Institut for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Paul Jennings
- 11Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Irene Manou
- 13European Partnership for Alternative Approaches to Animal Testing (EPAA), B-Brussels, Belgium
| | - Pratibha Mistry
- 14Syngenta Ltd., Product Safety, Jealott's Hill International Research Station, Berkshire, United Kingdom
| | - Angelo Moretto
- 15Dipartimento di Scienze Biochimiche e Cliniche, Università degli Studi di Milano, Milano, Italy.,16Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria, Luigi Sacco Hospital, Milano, Italy
| | - Adrian Roth
- 17F. Hoffmann-La Roche Ltd., Innovation Center Basel, Pharmaceutical Sciences, Basel, Switzerland
| | - Donald Stedman
- 18Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Bob van de Water
- 19Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
12
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
13
|
Ahuja V, Sharma S. Drug safety testing paradigm, current progress and future challenges: an overview. J Appl Toxicol 2013; 34:576-94. [PMID: 24777877 DOI: 10.1002/jat.2935] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 12/29/2022]
Abstract
Early assessment of the toxicity potential of new molecules in pharmaceutical industry is a multi-dimensional task involving predictive systems and screening approaches to aid in the optimization of lead compounds prior to their entry into development phase. Due to the high attrition rate in the pharma industry in last few years, it has become imperative for the nonclinical toxicologist to focus on novel approaches which could be helpful for early screening of drug candidates. The need is that the toxicologists should change their classical approach to a more investigative approach. This review discusses the developments that allow toxicologists to anticipate safety problems and plan ways to address them earlier than ever before. This includes progress in the field of in vitro models, surrogate models, molecular toxicology, 'omics' technologies, translational safety biomarkers, stem-cell based assays and preclinical imaging. The traditional boundaries between teams focusing on efficacy/ safety and preclinical/ clinical aspects in the pharma industry are disappearing, and translational research-centric organizations with a focused vision of bringing drugs forward safely and rapidly are emerging. Today's toxicologist should collaborate with medicinal chemists, pharmacologists, and clinicians and these value-adding contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Collapse
Affiliation(s)
- Varun Ahuja
- Drug Safety Assessment, Novel Drug Discovery and Development, Lupin Limited (Research Park), 46A/47A, Nande Village, MulshiTaluka, Pune, 412 115, India
| | | |
Collapse
|
14
|
Abstract
Regenerative Medicine (RM) has the promise to revolutionize the treatment of many debilitating diseases for which the current therapies are inadequate. To realize the full potential of RM, a pragmatic approach needs to be taken by all stakeholders keeping in mind the lessons learnt from recombinant protein manufacturing, gene therapy trials, etc., to develop novel service delivery models for economic viability and regulatory processes in the absence of long-term data. In this chapter, we focus on the three main drivers of RM field and discuss the potential pitfalls and possible ways to mitigate them in order to move the field closer to clinical implementation.
Collapse
|
15
|
Ulvestad M, Nordell P, Asplund A, Rehnström M, Jacobsson S, Holmgren G, Davidson L, Brolén G, Edsbagge J, Björquist P, Küppers-Munther B, Andersson TB. Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells. Biochem Pharmacol 2013; 86:691-702. [PMID: 23856292 DOI: 10.1016/j.bcp.2013.06.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% of 4 h hphep, respectively) were observed. Analyses of mRNA expression and immunocytochemistry supported the observed CYP and transporter activities and showed expression of additional CYPs and transporters. In conclusion, the stable expression and function of CYPs and transporters in hESC-Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform long term and extensive studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic system.
Collapse
Affiliation(s)
- Maria Ulvestad
- DMPK, AstraZeneca R&D Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kohonen P, Benfenati E, Bower D, Ceder R, Crump M, Cross K, Grafström RC, Healy L, Helma C, Jeliazkova N, Jeliazkov V, Maggioni S, Miller S, Myatt G, Rautenberg M, Stacey G, Willighagen E, Wiseman J, Hardy B. The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing. Mol Inform 2013; 32:47-63. [PMID: 27481023 DOI: 10.1002/minf.201200114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
Abstract
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lyn Healy
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | | - Silvia Maggioni
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | - Glyn Stacey
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | |
Collapse
|
17
|
Ellerström C, Strehl R, Hyllner J. Labeled stem cells as disease models and in drug discovery. Methods Mol Biol 2013; 997:239-51. [PMID: 23546761 DOI: 10.1007/978-1-62703-348-0_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human pluripotent stem cells provide unique possibilities for in vitro studies of human cells in basic research, disease modeling as well as in industrial applications. By introducing relevant genome engineering technology, and thereby creating, for example, reporter cell lines, one will facilitate and improve safety pharmacology, toxicity testing, and can help the scientists to better understand pathological processes in humans. This review discusses how the merger of these two fields, human pluripotent stem cells and genome engineering, form extremely powerful tools and how they have been implemented already within the scientific community. In sharp contrast to immortalized human cell lines, which are both easy to expand and very simple to transfect, the genetically modified pluripotent stem cell line can be directed to a specific cell lineage and provide the user with highly relevant information. We highlight some of the challenges the field had to solve and how new technology advancements has removed the early bottlenecks.
Collapse
|
18
|
Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH. Rodent models of alcoholic liver disease: of mice and men. Alcohol 2012; 46:715-25. [PMID: 22960051 DOI: 10.1016/j.alcohol.2012.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/18/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a major cause of acute and chronic liver disease worldwide. The progressive nature of ALD is well described; however, the complex interactions under which these pathologies evolve remain to be fully elucidated. Clinically there are no clear biomarkers or universally accepted, effective treatment strategies for ALD. Experimental models of ALD are an important component in identifying underlying mechanisms of alcohol-induced injury to develop better diagnostic markers, predictors of disease progression, and therapeutic targets to manage, halt, or reverse disease progression. Rodents remain the most accessible model for studying ALD pathology. Effective rodent models must mimic the natural history of ALD while allowing examination of complex interactions between multiple hepatic, and non-hepatic, cell types in the setting of altered metabolic or oxidative/nitrosative stress, inflammatory responses, and sensitivity to cytotoxic stress. Additionally, mode and duration of alcohol delivery influence hepatic response and present unique challenges in understanding disease pathology. This review provides an overview of rodent models of ALD, their strengths and weaknesses relative to human disease states, and provides insight of the potential to develop novel rodent models to simulate the course of human ALD.
Collapse
|
19
|
Abstract
Swedish researchers have been very active in the stem cell field for many years. They have pioneered areas such as clinical treatment of Parkinson’s disease, developmental biology including early stem cells, human embryonic stem cells, induced pluripotent stem cells and human mesenchymal stem cells. The Swedish Research Council and other funding organizations have been very positive for stem cell research, and there is a favorable law in Sweden regulating human embryonic stem cell research. Many groups have been active partners in projects funded by the European Commission. Clinical trials are ongoing with mesenchymal stem cells in graft versus host disease and osteogenesis imperfecta. Successful transplantations of trachea using a tissue-engineered product with cells cultured into a scaffold have been made recently [1] . Optimizing the stem cell type for these constructs is ongoing.
Collapse
Affiliation(s)
- Outi Hovatta
- Karolinska Institutet, Karolinska University Hospital Huddinge, K57, SE 141 86 Stockholm, Sweden
| |
Collapse
|
20
|
Tralau T, Luch A. Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 2012; 33:353-64. [DOI: 10.1016/j.tips.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|
21
|
Hook LA. Stem cell technology for drug discovery and development. Drug Discov Today 2012; 17:336-42. [DOI: 10.1016/j.drudis.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 01/12/2023]
|