1
|
Shah NM, Ghazaryan N, Gonzaga NL, Paclibar CG, Biju AP, Liang C, Mukherjee J. Glutamate's Effects on the N-Methyl-D-Aspartate (NMDA) Receptor Ion Channel in Alzheimer's Disease Brain: Challenges for PET Radiotracer Development for Imaging the NMDA Ion Channel. Molecules 2023; 29:20. [PMID: 38202606 PMCID: PMC10779680 DOI: 10.3390/molecules29010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
In an effort to further understand the challenges facing in vivo imaging probe development for the N-methyl-D-aspartate (NMDA) receptor ion channel, we have evaluated the effect of glutamate on the Alzheimer's disease (AD) brain. Human post-mortem AD brain slices of the frontal cortex and anterior cingulate were incubated with [3H]MK-801 and adjacent sections were tested for Aβ and Tau. The binding of [3H]MK-801 was measured in the absence and presence of glutamate and glycine. Increased [3H]MK-801 binding in AD brains was observed at baseline and in the presence of glutamate, indicating a significant increase (>100%) in glutamate-induced NMDA ion channel activity in AD brains compared to cognitively normal brains. The glycine effect was lower, suggesting a decrease of the co-agonist effect of glutamate and glycine in the AD brain. Our preliminary findings suggest that the targeting of the NMDA ion channel as well as the glutamate site may be appropriate in the diagnosis and treatment of AD. However, the low baseline levels of [3H]MK-801 binding in the frontal cortex and anterior cingulate in the absence of glutamate and glycine indicate significant hurdles for in vivo imaging probe development and validation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA; (N.M.S.); (N.G.); (N.L.G.); (C.G.P.); (A.P.B.); (C.L.)
| |
Collapse
|
2
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
3
|
Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal 2015; 2015:716514. [PMID: 25874256 PMCID: PMC4385697 DOI: 10.1155/2015/716514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/29/2014] [Indexed: 01/16/2023] Open
Abstract
l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs.
Collapse
|
4
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
5
|
McGinnity CJ, Hammers A, Riaño Barros DA, Luthra SK, Jones PA, Trigg W, Micallef C, Symms MR, Brooks DJ, Koepp MJ, Duncan JS. Initial evaluation of 18F-GE-179, a putative PET Tracer for activated N-methyl D-aspartate receptors. J Nucl Med 2014; 55:423-30. [PMID: 24525206 DOI: 10.2967/jnumed.113.130641] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED N-methyl D-aspartate (NMDA) ion channels play a key role in a wide range of physiologic (e.g., memory and learning tasks) and pathologic processes (e.g., excitotoxicity). To date, suitable PET markers of NMDA ion channel activity have not been available. (18)F-GE-179 is a novel radioligand that selectively binds to the open/active state of the NMDA receptor ion channel, displacing the binding of (3)H-tenocyclidine from the intrachannel binding site with an affinity of 2.4 nM. No significant binding was observed with 10 nM GE-179 at 60 other neuroreceptors, channels, or transporters. We describe the kinetic behavior of the radioligand in vivo in humans. METHODS Nine healthy participants (6 men, 3 women; median age, 37 y) each underwent a 90-min PET scan after an intravenous injection of (18)F-GE-179. Continuous arterial blood sampling over the first 15 min was followed by discrete blood sampling over the duration of the scan. Brain radioactivity (KBq/mL) was measured in summation images created from the attenuation- and motion-corrected dynamic images. Metabolite-corrected parent plasma input functions were generated. We assessed the abilities of 1-, 2-, and 3-compartment models to kinetically describe cerebral time-activity curves using 6 bilateral regions of interest. Parametric volume-of-distribution (V(T)) images were generated by voxelwise rank-shaping regularization of exponential spectral analysis (RS-ESA). RESULTS A 2-brain-compartment, 4-rate-constant model best described the radioligand's kinetics in normal gray matter of subjects at rest. At 30 min after injection, 37% of plasma radioactivity represented unmetabolized (18)F-GE-179. The highest mean levels of gray matter radioactivity were seen in the putamina and peaked at 7.5 min. A significant positive correlation was observed between K1 and V(T) (Spearman ρ = 0.398; P = 0.003). Between-subject coefficients of variation of V(T) ranged between 12% and 16%. Voxelwise RS-ESA yielded similar V(T)s and coefficients of variation. CONCLUSION (18)F-GE-179 exhibits high and rapid brain extraction, with a relatively homogeneous distribution in gray matter and acceptable between-subject variability. Despite its rapid peripheral metabolism, quantification of (18)F-GE-179 VT is feasible both within regions of interest and at the voxel level. The specificity of (18)F-GE-179 binding, however, requires further characterization with in vivo studies using activation and disease models.
Collapse
Affiliation(s)
- Colm J McGinnity
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sobrio F. Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors. J Labelled Comp Radiopharm 2013; 56:180-6. [DOI: 10.1002/jlcr.2995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/28/2012] [Accepted: 11/06/2012] [Indexed: 01/28/2023]
|
7
|
Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2012; 18:173-84. [PMID: 23092894 DOI: 10.1016/j.drudis.2012.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
Radioligands for PET imaging of glutamate receptors will have the potential for studying neurological and neuropsychiatric disorders and their diagnosis and therapeutic intervention. Glutamate is the major excitatory neurotransmitter in the brain and is implicated in the pathophysiology of many neurodegenerative and neuropsychiatric disorders. Glutamate and its receptors are potential targets in the treatment of these disorders. Glutamate signaling is mediated through ionotropic and metabotropic receptors. The abundant concentration of these receptors can facilitate their in vivo quantification using positron emission tomography (PET). Glutamate receptors are a potentially important set of targets for monitoring disease progression, for evaluating the effect of therapy and for new treatment development based on the quantification of receptor occupancy. Here, we review the PET and single-photon emission computed tomography (SPECT) radioligands that have been developed for imaging glutamate receptors in living brain.
Collapse
Affiliation(s)
- Vattoly J Majo
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
8
|
Zhou X, Zhang J, Yan C, Cao G, Zhang R, Cai G, Jiang M, Wang S. Preliminary studies of (99m)Tc-memantine derivatives for NMDA receptor imaging. Nucl Med Biol 2012; 39:1034-41. [PMID: 22516779 DOI: 10.1016/j.nucmedbio.2012.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Novel technetium-labeled ligands, (99m)Tc-NCAM and (99m)Tc-NHAM were developed from the N-methyl-d-aspartate (NMDA) receptor agonist memantine as a lead compound by coupling with N(2)S(2). This study evaluated the binding affinity and specificity of the ligands for the NMDA receptor. METHODS Ligand biodistribution and uptake specificity in the brain were investigated in mice. Binding affinity and specificity were determined by radioligand receptor binding assay. Three antagonists were used for competitive binding analysis. In addition, uptake of the complexes into SH-SY5Y nerve cells was evaluated. RESULTS The radiochemical purity of (99m)Tc-labeled ligands was more than 95%. Analysis of brain regional uptake showed higher concentration in the frontal lobe and specific uptake in the hippocampus. (99m)Tc-NCAM reached a higher target to nontarget ratio than (99m)Tc-NHAM. The results indicated that (99m)Tc-NCAM bound to a single site on the NMDA receptor with a K(d) of 701.21 nmol/l and a B(max) of 62.47 nmol/mg. Specific inhibitors of the NMDA receptor, ketamine and dizocilpine, but not the dopamine D(2) and 5HT(1A) receptor partial agonist aripiprazole, inhibited specific binding of (99m)Tc-NCAM to the NMDA receptor. Cell physiology experiments showed that NCAM can increase the viability of SH-SY5Y cells after glutamate-induced injury. CONCLUSIONS The new radioligand (99m)Tc-NCAM has good affinity for and specific binding to the NMDA receptor, and easily crosses the blood-brain barrier; suggesting that it might be a potentially useful tracer for NMDA receptor expression.
Collapse
Affiliation(s)
- Xingqin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ali SF, Onaivi ES, Dodd PR, Cadet JL, Schenk S, Kuhar MJ, Koob GF. Understanding the Global Problem of Drug Addiction is a Challenge for IDARS Scientists. Curr Neuropharmacol 2011; 9:2-7. [PMID: 21886551 PMCID: PMC3137181 DOI: 10.2174/157015911795017245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
IDARS is an acronym for the International Drug Abuse Research Society. Apart from our scientific and educational purposes, we communicate information to the general and scientific community about substance abuse and addiction science and treatment potential. Members of IDARS are research scientists and clinicians from around the world, with scheduled meetings across the globe. IDARS is developing a vibrant and exciting international mechanism not only for scientific interactions in the domain of addiction between countries but also ultimately as a resource for informing public policy across nations. Nonetheless, a lot more research needs to be done to better understand the neurobiological basis of drug addiction - A challenge for IDARS scientists.
Collapse
Affiliation(s)
- S F Ali
- Neurochemistry Laboratory, NCTR/FDA, Jefferson, AR, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Cumming P, Caprioli D, Dalley JW. What have positron emission tomography and 'Zippy' told us about the neuropharmacology of drug addiction? Br J Pharmacol 2011; 163:1586-604. [PMID: 20846139 PMCID: PMC3166689 DOI: 10.1111/j.1476-5381.2010.01036.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/09/2010] [Accepted: 08/31/2010] [Indexed: 11/27/2022] Open
Abstract
Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D(2/3) receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats--as exemplified by 'Zippy'--are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D(2/3) receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Ludwig-Maximilian's University, Munich, Germany
| | | | | |
Collapse
|
11
|
Fuchigami T, Yamaguchi H, Ogawa M, Biao L, Nakayama M, Haratake M, Magata Y. Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorg Med Chem 2010; 18:7497-506. [DOI: 10.1016/j.bmc.2010.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|
12
|
In-vivo visualization of key molecular processes involved in Alzheimer's disease pathogenesis: Insights from neuroimaging research in humans and rodent models. Biochim Biophys Acta Mol Basis Dis 2010; 1802:373-88. [PMID: 20060898 DOI: 10.1016/j.bbadis.2010.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Diverse age-associated neurodegenerative disorders are featured at a molecular level by depositions of self-aggregating molecules, as represented by amyloid beta peptides (Abeta) and tau proteins in Alzheimer's disease, and cascade-type chain reactions are supposedly commenced with biochemical aberrancies of these amyloidogenic components. Mutagenesis and multiplication of the genes encoding Abeta, tau and other pathogenic initiators may accelerate the incipient process at the cascade top, rationalizing generations of transgenic and knock-in animal models of these illnesses. Meanwhile, these genetic manipulations do not necessarily compress the timelines of crucial intermediate events linking amyloidogenesis and neuronal lethality, resulting in an incomplete recapitulation of the diseases. Requirements for modeling the entire cascade can be illustrated by a side-by-side comparison of humans and animal models with the aid of imaging-based biomarkers commonly applicable to different species. Notably, key components in a highly reactive state are assayable by probe-assisted neuroimaging techniques exemplified by positron emission tomography (PET), providing critical information on the in-vivo accessibility of these target molecules. In fact, multispecies PET studies in conjunction with biochemical, electrophysiological and neuropathological tests have revealed putative neurotoxic subspecies of Abeta assemblies, translocator proteins accumulating in aggressive but not neuroprotective microglia, and functionally active neuroreceptors available to endogenous neurotransmitters and exogenous agonistic ligands. Bidirectional translational studies between human cases and model strains based on this experimental paradigm are presently aimed at clarifying the tau pathogenesis, and would be expanded to analyses of disrupted calcium homeostasis and mitochondrial impairments. Since reciprocal causalities among the key processes have indicated an architectural interchangeability between cascade and network connections as an etiological representation, longitudinal imaging assays with manifold probes covering the cascade from top to bottom virtually delineate the network dynamics continuously altering in the course of the disease and its treatment, and therefore expedite the evaluation and optimization of therapeutic strategies intended for suppressing the neurodegenerative pathway over its full length.
Collapse
|
13
|
Knol RJJ, de Bruin K, van Eck-Smit BLF, Pimlott S, Wyper DJ, Booij J. In vivo [(123)I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: A storage phosphor imaging study in rats. Synapse 2009; 63:557-64. [PMID: 19288577 DOI: 10.1002/syn.20629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Disturbances of activity of the glutamatergic neurotransmitter system in the brain are present in many neuropsychiatric disorders. The N-methyl-D-aspartate (NMDA) receptor is the most abundant receptor of the glutamatergic system. In the neurodegenerative events of Alzheimer's disease, excessive activation of NMDA receptors may contribute to neuronal death. Inhibition of NMDA receptor activation may have neuroprotective effects and (semi)quantitative imaging of the activated system may help in the selection of patients for such inhibition therapies. In this study we evaluated [(123)I]CNS-1261 binding in the rat brain. This radiotracer binds in vivo to the MK801 binding site of activated NMDA receptors. To determine the optimal time point for ex vivo assessments after bolus injection [(123)I]CNS-1261 binding in rats, we performed a time course biodistribution study using dissection techniques. [(123)I]CNS-1261 binding was also studied in the rat brain using autoradiography by means of storage phosphor imaging, with prior facilitation of NMDA receptor activation by injection of the potent coagonist D-serine and after blocking of the NMDA receptor binding site by MK801 injection in D-serine pretreated rats. Measurements of [(123)I]CNS-1261 uptake matched the distribution of similar tracers for the MK801 binding site of the NMDA receptor and revealed an optimal time point of 2 h post injection for the assessment of tracer distribution in the rat brain. The blocking experiments indicated specific binding of [(123)I]CNS-1261 to NMDA receptors but also a considerable amount of nonspecific binding. Facilitation of NMDA receptor activation by D-serine did not result in an enhancement of binding of the radiotracer in the NMDA receptor-rich rat hippocampus compared to the untreated group, as measured by autoradiography. In conclusion, our study has shown that [(123)I]CNS-1261 binding is influenced by NMDA receptor availability. However, high nonspecific binding limits quantification and small changes in receptor availability are unlikely to be detected.
Collapse
Affiliation(s)
- Remco J J Knol
- Department of Nuclear Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Fuchigami T, Haradahira T, Fujimoto N, Nojiri Y, Mukai T, Yamamoto F, Okauchi T, Maeda J, Suzuki K, Suhara T, Yamaguchi H, Ogawa M, Magata Y, Maeda M. Development of N-[11C]methylamino 4-hydroxy-2(1H)-quinolone derivatives as PET radioligands for the glycine-binding site of NMDA receptors. Bioorg Med Chem 2009; 17:5665-75. [DOI: 10.1016/j.bmc.2009.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/04/2009] [Accepted: 06/06/2009] [Indexed: 10/20/2022]
|
15
|
Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel. Nucl Med Biol 2008; 35:203-12. [DOI: 10.1016/j.nucmedbio.2007.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/02/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
|