1
|
Costa Alegre MD, Barbosa DJ, Dinis-Oliveira RJ. Metabolism of m-CPP, trazodone, nefazodone, and etoperidone: clinical and forensic aspects. Drug Metab Rev 2025; 57:115-146. [PMID: 39945551 DOI: 10.1080/03602532.2025.2465482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Trazodone, nefazodone, and etoperidone are classified as atypical antidepressants belonging to the phenylpiperazine class. These antidepressants are primarily metabolized by CYP3A4 into m-chlorophenylpiperazine (mCPP), which was initially employed in veterinary medicine but has gained widespread use as a recreational drug globally despite legal restrictions in numerous countries. The active metabolite, mCPP, exerts various neuropsychiatric effects by interacting with serotonin receptors. It primarily exhibits nonselective agonistic properties with some antagonistic effects and influences temperature, behavior, and hormone release via central 5-HT receptors. The surge in mCPP popularity can be attributed to its MDMA-like effects, and its initial misidentification as an MDMA substitute facilitated its unregulated distribution worldwide. This review aims to comprehensively explore the pharmacokinetics and pharmacodynamics of these compounds, with a specific focus on the forensic challenges posed by mCPP as a metabolite of antidepressants. The primary objective is to delineate the consumption patterns of these compounds in laboratory settings, making this review crucial for understanding the intricate nuances of these drugs in forensic contexts.
Collapse
Affiliation(s)
- Mariana Duarte Costa Alegre
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- FOREN - Forensic Science Experts, Lisbon, Portugal
| |
Collapse
|
2
|
Delint-Ramirez I, Garcia-Oscos F, Segev A, Kourrich S. Cocaine engages a non-canonical, dopamine-independent, mechanism that controls neuronal excitability in the nucleus accumbens. Mol Psychiatry 2020; 25:680-691. [PMID: 29880884 PMCID: PMC7042730 DOI: 10.1038/s41380-018-0092-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Drug-induced enhanced dopamine (DA) signaling in the brain is a canonical mechanism that initiates addiction processes. However, indirect evidence suggests that cocaine also triggers non-canonical, DA-independent, mechanisms that contribute to behavioral responses to cocaine, including psychomotor sensitization and cocaine self-administration. Identifying these mechanisms and determining how they are initiated is fundamental to further our understanding of addiction processes. Using physiologically relevant in vitro tractable models, we found that cocaine-induced hypoactivity of nucleus accumbens shell (NAcSh) medium spiny neurons (MSNs), one hallmark of cocaine addiction, is independent of DA signaling. Combining brain slice studies and site-directed mutagenesis in HEK293T cells, we found that cocaine binding to intracellular sigma-1 receptor (σ1) initiates this mechanism. Subsequently, σ1 binds to Kv1.2 potassium channels, followed by accumulation of Kv1.2 in the plasma membrane, thereby depressing NAcSh MSNs firing. This mechanism is specific to D1 receptor-expressing MSNs. Our study uncovers a mechanism for cocaine that bypasses DA signaling and leads to addiction-relevant neuroadaptations, thereby providing combinatorial strategies for treating stimulant abuse.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Francisco Garcia-Oscos
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Amir Segev
- 0000 0000 9482 7121grid.267313.2Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Hondebrink L, Zwartsen A, Westerink RHS. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol Ther 2017; 182:193-224. [PMID: 29097307 DOI: 10.1016/j.pharmthera.2017.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing and currently >600 NPS have been reported. However, limited information on neuropharmacological and toxicological effects of NPS is available, hampering risk characterization. We reviewed the literature on the in vitro neuronal modes of action to obtain effect fingerprints of different classes of illicit drugs and NPS. The most frequently reported NPS were selected for review: cathinones (MDPV, α-PVP, mephedrone, 4-MEC, pentedrone, methylone), cannabinoids (JWH-018), (hallucinogenic) phenethylamines (4-fluoroamphetamine, benzofurans (5-APB, 6-APB), 2C-B, NBOMes (25B-NBOMe, 25C-NBOMe, 25I-NBOMe)), arylcyclohexylamines (methoxetamine) and piperazine derivatives (mCPP, TFMPP, BZP). Our effect fingerprints highlight the main modes of action for the different NPS studied, including inhibition and/or reversal of monoamine reuptake transporters (cathinones and non-hallucinogenic phenethylamines), activation of 5-HT2receptors (hallucinogenic phenethylamines and piperazines), activation of cannabinoid receptors (cannabinoids) and inhibition of NDMA receptors (arylcyclohexylamines). Importantly, we identified additional targets by relating reported effect concentrations to the estimated human brain concentrations during recreational use. These additional targets include dopamine receptors, α- and β-adrenergic receptors, GABAAreceptors and acetylcholine receptors, which may all contribute to the observed clinical symptoms following exposure. Additional data is needed as the number of NPS continues to increase. Also, the effect fingerprints we have obtained are still incomplete and suffer from a large variation in the reported effects and effect sizes. Dedicated in vitro screening batteries will aid in complementing specific effect fingerprints of NPS. These fingerprints can be implemented in the risk assessments of NPS that are necessary for eventual control measures to reduce Public Health risks.
Collapse
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anne Zwartsen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C, Hechler B, Gachet C, Guyonnet J, Rouillard H, Stoltz J, Quentin E, Banas S, Daubeuf F, Frossard N, Gasser B, Mazzucotelli JP, Hermine O, Maroteaux L, Monassier L. The role of 5-HT 2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors. Br J Pharmacol 2017; 174:4123-4139. [PMID: 28806488 DOI: 10.1111/bph.13981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/03/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Valvular heart disease (VHD) is highly prevalent in industrialized countries. Chronic use of anorexigens, amphetamine or ergot derivatives targeting the 5-HT system is associated with VHD. Here, we investigated the contribution of 5-HT receptors in a model of valve degeneration induced by nordexfenfluramine, the main metabolite of the anorexigens, dexfenfluramine and benfluorex. EXPERIMENTAL APPROACH Nordexfenfluramine was infused chronically (28 days) in mice ((WT and transgenic Htr2B -/- , Htr2A -/- , and Htr2B/2A -/- ) to induce mitral valve lesions. Bone marrow transplantation was also carried out. Haemodynamics were measured with echocardiography; tissues and cells were analysed by histology, immunocytochemistry, flow cytometry and RT -qPCR. Samples of human prolapsed mitral valves were also analysed. KEY RESULTS Chronic treatment of mice with nordexfenfluramine activated 5-HT2B receptors and increased valve thickness and cell density in a thick extracellular matrix, mimicking early steps of mitral valve remodelling. Lesions were prevented by 5-HT2A or 5-HT2B receptor antagonists and in transgenic Htr2B -/- or Htr2A/2B -/- mice. Surprisingly, valve lesions were mainly formed by numerous non-proliferative CD34+ endothelial progenitors. These progenitors originated from bone marrow (BM) as revealed by BM transplantation. The initial steps of mitral valve remodelling involved mobilization of BM-derived CD34+ CD31+ cells by 5-HT2B receptor stimulation. Analysis of human prolapsed mitral valves showing spontaneous degenerative lesions, demonstrated the presence of non-proliferating CD34+ /CD309+ /NOS3+ endothelial progenitors expressing 5-HT2B receptors. CONCLUSIONS AND IMPLICATIONS BM-derived endothelial progenitor cells make a crucial contribution to the remodelling of mitral valve tissue. Our data describe a new and important mechanism underlying human VHD.
Collapse
Affiliation(s)
- Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Roland Lawson
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Francine Côté
- Department of Hematology, Institut Imagine, INSERM U1183 CNRS ERL 8254, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Universitaire Necker Enfants Malades, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Claudia de Tapia
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Sylvia Da Silva
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Claudine Ebel
- Department of Flow Cytometry, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Béatrice Hechler
- Etablissement Français du sang (EFS) Alsace, Inserm U949, Strasbourg, France
| | - Christian Gachet
- Etablissement Français du sang (EFS) Alsace, Inserm U949, Strasbourg, France
| | - Jérome Guyonnet
- Pharmaceutical Research Department, CEVA Santé Animale, Libourne, France
| | - Hélène Rouillard
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | - Jordane Stoltz
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | - Emily Quentin
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sophie Banas
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, LabExMedalis, Faculté de Pharmacie, Illkirch, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, LabExMedalis, Faculté de Pharmacie, Illkirch, France
| | - Bernard Gasser
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | | | - Olivier Hermine
- Department of Hematology, Institut Imagine, INSERM U1183 CNRS ERL 8254, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Universitaire Necker Enfants Malades, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Luc Maroteaux
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Dinday MT, Baraban SC. Large-Scale Phenotype-Based Antiepileptic Drug Screening in a Zebrafish Model of Dravet Syndrome. eNeuro 2015; 2:ENEURO.0068-15.2015. [PMID: 26465006 PMCID: PMC4596025 DOI: 10.1523/eneuro.0068-15.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in a voltage-gated sodium channel (SCN1A) result in Dravet Syndrome (DS), a catastrophic childhood epilepsy. Zebrafish with a mutation in scn1Lab recapitulate salient phenotypes associated with DS, including seizures, early fatality, and resistance to antiepileptic drugs. To discover new drug candidates for the treatment of DS, we screened a chemical library of ∼1000 compounds and identified 4 compounds that rescued the behavioral seizure component, including 1 compound (dimethadione) that suppressed associated electrographic seizure activity. Fenfluramine, but not huperzine A, also showed antiepileptic activity in our zebrafish assays. The effectiveness of compounds that block neuronal calcium current (dimethadione) or enhance serotonin signaling (fenfluramine) in our zebrafish model suggests that these may be important therapeutic targets in patients with DS. Over 150 compounds resulting in fatality were also identified. We conclude that the combination of behavioral and electrophysiological assays provide a convenient, sensitive, and rapid basis for phenotype-based drug screening in zebrafish mimicking a genetic form of epilepsy.
Collapse
Affiliation(s)
- Matthew T. Dinday
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
| | - Scott C. Baraban
- Department of Neurological Surgery, Epilepsy Research Laboratory, University of California San Francisco, San Francisco, California 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
6
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB. Alpha-ethyltryptamines as dual dopamine-serotonin releasers. Bioorg Med Chem Lett 2014; 24:4754-4758. [PMID: 25193229 DOI: 10.1016/j.bmcl.2014.07.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.
Collapse
Affiliation(s)
- Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Antonio Landavazo
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - John S Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Kevin M Page
- Center for Drug Discovery, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Michael H Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 2014; 17:371-81. [PMID: 24103254 DOI: 10.1017/s1461145713001132] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methylphenidate and 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') are widely misused psychoactive drugs. Methylphenidate increases brain dopamine and norepinephrine levels by blocking the presynaptic reuptake transporters. MDMA releases serotonin, dopamine and norepinephrine through the same transporters. Pharmacodynamic interactions of methylphenidate and MDMA are likely. This study compared the pharmacodynamic and pharmacokinetic effects of methylphenidate and MDMA administered alone or in combination in healthy subjects using a double-blind, placebo-controlled, crossover design. Methylphenidate did not enhance the psychotropic effects of MDMA, although it produced psychostimulant effects on its own. The haemodynamic and adverse effects of co-administration of methylphenidate and MDMA were significantly higher compared with MDMA or methylphenidate alone. Methylphenidate did not change the pharmacokinetics of MDMA and vice versa. Methylphenidate and MDMA shared some subjective amphetamine-type effects; however, 125 mg of MDMA increased positive mood more than 60 mg of methylphenidate, and methylphenidate enhanced activity and concentration more than MDMA. Methylphenidate and MDMA differentially altered facial emotion recognition. Methylphenidate enhanced the recognition of sad and fearful faces, whereas MDMA reduced the recognition of negative emotions. Additionally, the present study found acute pharmacodynamic tolerance to MDMA but not methylphenidate. In conclusion, the combined use of methylphenidate and MDMA does not produce more psychoactive effects compared with either drug alone, but potentially enhances cardiovascular and adverse effects. The findings may be of clinical importance for assessing the risks of combined psychostimulant misuse. Trial registration identification number: NCT01465685 (http://clinicaltrials.gov/ct2/show/NCT01465685).
Collapse
|
9
|
Gabrielsen M, Kurczab R, Siwek A, Wolak M, Ravna AW, Kristiansen K, Kufareva I, Abagyan R, Nowak G, Chilmonczyk Z, Sylte I, Bojarski AJ. Identification of novel serotonin transporter compounds by virtual screening. J Chem Inf Model 2014; 54:933-43. [PMID: 24521202 PMCID: PMC3982395 DOI: 10.1021/ci400742s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing approximately 3.24 million drug-like compounds have been screened using a combination of two-dimensional (2D) fingerprint-based and three-dimensional (3D) pharmacophore-based screening and flexible docking into multiple conformations of the binding pocket detected in an outward-open SERT homology model. Following virtual screening (VS), selected compounds were evaluated using in vitro screening and full binding assays and an in silico hit-to-lead (H2L) screening was performed to obtain analogues of the identified compounds. Using this multistep VS/H2L approach, 74 active compounds, 46 of which had K(i) values of ≤1000 nM, belonging to 16 structural classes, have been identified, and multiple compounds share no structural resemblance with known SERT binders.
Collapse
Affiliation(s)
- Mari Gabrielsen
- Medical Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway , 9037 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mittur A. Trazodone: properties and utility in multiple disorders. Expert Rev Clin Pharmacol 2014; 4:181-96. [DOI: 10.1586/ecp.10.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Hysek CM, Simmler LD, Nicola VG, Vischer N, Donzelli M, Krähenbühl S, Grouzmann E, Huwyler J, Hoener MC, Liechti ME. Duloxetine inhibits effects of MDMA ("ecstasy") in vitro and in humans in a randomized placebo-controlled laboratory study. PLoS One 2012; 7:e36476. [PMID: 22574166 PMCID: PMC3344887 DOI: 10.1371/journal.pone.0036476] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/31/2012] [Indexed: 12/01/2022] Open
Abstract
This study assessed the effects of the serotonin (5-HT) and norepinephrine (NE) transporter inhibitor duloxetine on the effects of 3,4–methylenedioxymethamphetamine (MDMA, ecstasy) in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence.
Collapse
Affiliation(s)
- Cédric M. Hysek
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Linda D. Simmler
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Valentina G. Nicola
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Nerina Vischer
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Massimiliano Donzelli
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | - Eric Grouzmann
- Divisions of Clinical Pharmacology and Toxicology, University Hospital, Lausanne, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marius C. Hoener
- Pharmaceuticals Division, Neuroscience Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias E. Liechti
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE. Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters. J Pharmacol Exp Ther 2012; 341:251-62. [PMID: 22271821 PMCID: PMC3364510 DOI: 10.1124/jpet.111.188946] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/19/2011] [Indexed: 12/19/2022] Open
Abstract
Several compounds have been identified that display low-efficacy, "partial substrate" activity. Here, we tested the hypothesis that the mechanism of this effect is a slower rate of induced neurotransmitter efflux than that produced by full substrates. Biogenic amine transporter release assays were carried out in rat brain synaptosomes and followed published procedures. [(3)H]1-methyl-4-phenylpyridinium (MPP(+)) was used to assess release from dopamine (DA) and norepinephrine nerve terminals, whereas [(3)H]5-hydroxytryptamine (5-HT) was used to assess release from 5-HT nerve terminals. A detailed time-course evaluation of DA transporter (DAT)-mediated efflux was conducted by measuring the efflux of [(3)H]MPP(+) after the addition of various test compounds. In vivo microdialysis experiments compared the effects of the full substrates [(±)-1-(2-naphthyl)propan-2-amine (PAL-287) and (S)-N-methyl-1-(2-naphthyl)propan-2-amine (PAL-1046)], to that of a partial DAT/5-HT transporter substrate [(S)-N-ethyl-1-(2-naphthyl)propan-2-amine (PAL-1045)] on extracellular DA and 5-HT in the nucleus accumbens of the rat. The in vitro release assays demonstrated that partial substrate activity occurs at all three transporters. In the DAT efflux experiments, D-amphetamine (full substrate) promoted a fast efflux (K1 = 0.24 min(-1)) and a slow efflux (K2 = 0.008 min(-1)). For the partial DAT substrates, K1 = ∼0.04 min(-1), and K2 approximated zero. The in vivo microdialysis experiments showed that the partial substrate (PAL-1045) was much less effective in elevating extracellular DA and 5-HT than the comparator full substrates. We conclude that low-efficacy partial DAT substrates promote efflux at a slower rate than full substrates, and "partiality" reflects the ultra-slow K2 constant, which functionally limits the ability of these compounds to increase extracellular DA. We speculate that partial biogenic amine transporter substrates bind to the transporter but are less effective in inducing conformational changes required for reverse transport activity.
Collapse
Affiliation(s)
- Richard B Rothman
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Drive, Suite 4500, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
13
|
Schaefer TL, Grace CE, Skelton MR, Graham DL, Gudelsky GA, Vorhees CV, Williams MT. Neonatal citalopram treatment inhibits the 5-HT depleting effects of MDMA exposure in rats. ACS Chem Neurosci 2012; 3:12-21. [PMID: 22582138 DOI: 10.1021/cn2000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neonatal exposure to 3,4-methylenedioxymethamphetamine (MDMA) produces long-term learning and memory deficits and increased anxiety-like behavior. The mechanism underlying these behavioral changes is unknown but we hypothesized that it involves perturbations to the serotonergic system as this is the principle mode of action of MDMA in the adult brain. During development 5-HT is a neurotrophic factor involved in neurogenesis, synaptogenesis, migration, and target region specification. We have previously showed that MDMA exposure (4×10 mg/kg/day) from P11-20 (analogous to human third trimester exposure) induces ~50% decreases in hippocampal 5-HT throughout treatment. To determine whether MDMA-induced 5-HT changes are determinative, we tested if these changes could be prevented by treatment with a selective serotonin reuptake inhibitor (citalopram: CIT). In a series of experiments we evaluated the effects of different doses and dose regimens of CIT on MDMA-induced 5-HT depletions in three brain regions (hippocampus, entorhinal cortex, and neostriatum) at three time-points (P12, P16, P21) during the treatment interval (P11-20) known to induce behavioral alterations when animals are tested as adults. We found that 5 mg/kg CIT administered twice daily significantly attenuated MDMA-induced 5-HT depletions in all three regions at all three ages but that the protection was not complete at all ages. Striatal dopamine was unaffected. We also found increases in hippocampal NGF and plasma corticosterone following MDMA treatment on P16 and P21, respectively. No changes in BDNF were observed. CIT treatment may be a useful means of interfering with MDMA-induced 5-HT reductions and thus permit tests of the hypothesis that the drug's cognitive and/or anxiety effects are mediated through early disruptions to 5-HT dependent developmental processes.
Collapse
Affiliation(s)
- Tori L. Schaefer
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Curtis E. Grace
- United States Environmental Protection Agency, Durham, North Carolina 27713, United
States
| | - Matthew R. Skelton
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Devon L. Graham
- Vanderbilt University College of Medicine, Nashville, Tennessee 32732, United
States
| | - Gary A. Gudelsky
- James L. Winkle
College of Pharmacy, University of Cincinnati, Ohio 45267-0004, United States
| | - Charles V. Vorhees
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Michael T. Williams
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| |
Collapse
|
14
|
Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. Eur J Med Chem 2011; 47:24-37. [PMID: 22071255 DOI: 10.1016/j.ejmech.2011.09.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/16/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022]
Abstract
The two main groups of antidepressant drugs, the tricyclic antidepressants (TCAs) and the selective serotonin reuptake inhibitors (SSRIs), as well as several other compounds, act by inhibiting the serotonin transporter (SERT). However, the binding mode and molecular mechanism of inhibition in SERT are not fully understood. In this study, five classes of SERT inhibitors were docked into an outward-facing SERT homology model using a new 4D ensemble docking protocol. Unlike other docking protocols, where protein flexibility is not considered or is highly dependent on the ligand structure, flexibility was here obtained by side chain sampling of the amino acids of the binding pocket using biased probability Monte Carlo (BPMC) prior to docking. This resulted in the generation of multiple binding pocket conformations that the ligands were docked into. The docking results showed that the inhibitors were stacked between the aromatic amino acids of the extracellular gate (Y176, F335) presumably preventing its closure. The inhibitors interacted with amino acids in both the putative substrate binding site and more extracellular regions of the protein. A general structure-docking-based pharmacophore model was generated to explain binding of all studied classes of SERT inhibitors. Docking of a test set of actives and decoys furthermore showed that the outward-facing ensemble SERT homology model consistently and selectively scored the majority of active compounds above decoys, which indicates its usefulness in virtual screening.
Collapse
|
15
|
Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME. The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA ("ecstasy") in humans. Clin Pharmacol Ther 2011; 90:246-55. [PMID: 21677639 DOI: 10.1038/clpt.2011.78] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study assessed the pharmacodynamic and pharmacokinetic effects of the interaction between the selective norepinephrine (NE) transporter inhibitor reboxetine and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in 16 healthy subjects. The study used a double-blind, placebo-controlled crossover design. Reboxetine reduced the effects of MDMA including elevations in plasma levels of NE, increases in blood pressure and heart rate, subjective drug high, stimulation, and emotional excitation. These effects were evident despite an increase in the concentrations of MDMA and its active metabolite 3,4-methylenedioxyamphetamine (MDA) in plasma. The results demonstrate that transporter-mediated NE release has a critical role in the cardiovascular and stimulant-like effects of MDMA in humans.
Collapse
Affiliation(s)
- C M Hysek
- Psychopharmacology Research Group, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|