1
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
2
|
Azimzadeh M, Mohd Azmi MAN, Reisi P, Cheah PS, Ling KH. Step-by-step approach: Stereotaxic surgery for in vivo extracellular field potential recording at the rat Schaffer collateral-CA1 synapse using the eLab system. MethodsX 2024; 12:102544. [PMID: 38283759 PMCID: PMC10820282 DOI: 10.1016/j.mex.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
In vivo extracellular field potential recording is a commonly used technique in modern neuroscience research. The success of long-term electrophysiological recordings often depends on the quality of the implantation surgery. However, there is limited use of visually guided stereotaxic neurosurgery and the application of the eLab/ePulse electrophysiology system in rodent models. This study presents a practical and functional manual guide for surgical electrode implantation in rodent models using the eLab/ePulse electrophysiology system for recording and stimulation purposes to assess neuronal functionality and synaptic plasticity. The evaluation parameters included the input/output function (IO), paired-pulse facilitation or depression (PPF/PPD), long-term potentiation (LTP), and long-term depression (LTD).•Provides a detailed picture-guided procedure for conducting in vivo stereotaxic neurosurgery.•Specifically covers the insertion of hippocampal electrodes and the recording of evoked extracellular field potentials.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Biomedical Sciences Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Mohd Amirul Najwa Mohd Azmi
- Deputy Dean's Office (Research and Internationalization), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
3
|
Meftahi GH, Aboutaleb N. Gallic acid ameliorates behavioral dysfunction, oxidative damage, and neuronal loss in the prefrontal cortex and hippocampus in stressed rats. J Chem Neuroanat 2023; 134:102364. [PMID: 38016595 DOI: 10.1016/j.jchemneu.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Gallic acid (GA) is known to be a natural phenolic compound with antioxidant and neuroprotective effects. This study aims to investigate the impact of GA against restraint stress-induced oxidative damage, anxiety-like behavior, neuronal loss, and spatial learning and memory impairment in male Wistar rats. The animals were divided into four groups (n = 8) and subjected to restraint stress for 4 h per day for 14 consecutive days or left undisturbed (control without inducing stress). In the treatment group, the animals were treated with 2 mL normal saline plus 100 mg/kg GA per day for 14 consecutive days (STR + GA group). The animals received the drug or normal saline by gavage 2 h before inducing restraint stress. ELISA assay measured oxidative stress factors. Elevated-plus maze and Morris water maze tests assessed anxiety-like behavior and spatial learning and memory, respectively. Also, neuronal density was determined using Nissl staining. Restraint stress significantly increased MDA and reduced the activities of GPX and SOD in the stressed rats, which were reserved by treatment with 100 mg/kg GA. Restraint stress markedly enhanced the anxiety-like behavior and spatial learning and memory impairment that were reserved by GA. In addition, treatment with GA reduced the neuronal loss in the stressed rats in the hippocampus and prefrontal cortex (PFC) regions. Taken together, our findings suggest that GA has the potential to be used as a good candidate to attenuate neurobehavioral disorders as well as neuronal loss in the hippocampus and PFC induced by restraint stress via reducing oxidative damage.
Collapse
Affiliation(s)
- Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhou R, Jin C, Jiao L, Zhang S, Tian M, Liu J, Yang S, Yao W, Zhou F. GGA (geranylgeranylacetone) ameliorates bleomycin-induced lung inflammation and pulmonary fibrosis by inhibiting apoptosis and oxidative stress. Mol Biol Rep 2023; 50:7215-7224. [PMID: 37418084 DOI: 10.1007/s11033-023-08590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Fibrosis is a response to ongoing cellular injury, disruption, and tissue remodeling, the pathogenesis of which is unknown, and is characterized by extracellular matrix deposition. The antifibrotic effect of Geranylgeranylacetone (GGA), as an inducer of Heat shock protein 70 (HSP70), in liver, kidney and pulmonary fibrosis has been supported by multiple preclinical evidence. However, despite advances in our understanding, the precise roles of HSP70 in fibrosis require further investigation. The purpose of this study was to investigate whether GGA could participate in the progression of pulmonary fibrosis in mice through apoptosis, oxidative stress and inflammation. METHODS AND RESULTS B-cell lymphoma-2(Bcl-2) and Bcl2-Associated X (Bax) are two proteins related to apoptosis. Anti-apoptotic factor Bcl-2 and pro-apoptotic factor Bax are often involved in the apoptotic process in the form of dimer. Immunofluorescence and Western blot results showed that bleomycin (BLM) and transforming growth factor-β (TGF-β) inhibited Bcl-2 expression and promoted Bax expression in vitro and in vivo, respectively. In contrast, GGA treatment reverses this change. Reactive oxygen species (ROS), Malondialdehyde (MDA) and superoxide dismutase (SOD) are markers of oxidative stress, which often reflect oxidative injury of cells. The detection of ROS, MDA and SOD expression showed that TGF-β and BLM treatment could significantly promote oxidative stress, while GGA treatment could alleviate oxidative stress damage. In addition, BLM significantly elevated Tumor necrosis factor-α(TNF-α), Interleukin1β (IL-1β) and Interleukin 6 (IL-6), while scutellarin reversed the above alterations except for that of GGA. RESULTS Taken together, GGA suppressed apoptotic, oxidative stress and inflammation in BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Chaomei Jin
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Linlin Jiao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Siyu Zhang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Mei Tian
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Jiamin Liu
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Songtai Yang
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Wu Yao
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Fang Zhou
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| |
Collapse
|
5
|
Jokar Z, Khatamsaz S, Alaei H, Shariati M. The electrical stimulation of the central nucleus of the amygdala in combination with dopamine receptor antagonist reduces the acquisition phase of morphine-induced conditioned place preference in male rat. Res Pharm Sci 2023; 18:430-438. [PMID: 37614617 PMCID: PMC10443671 DOI: 10.4103/1735-5362.378089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 05/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose The central nucleus of the amygdala (CeA) is one of the nuclei involved in the reward system. The aim of the current study was to investigate the electrical stimulation (e-stim) effect of the CeA in combination with dopamine D1 receptor antagonist on morphine-induced conditioned place preference (CPP) in male rats. Experimental approach A 5-day procedure of CPP was used in this study. Morphine was administered at an effective dose of 5 mg/kg, and SCH23390 as a selective D1 receptor antagonist was administrated into the CeA. In addition, the CeA was stimulated with an intensity of the current of 150 μA. Finally, the dependence on morphine was evaluated in all experimental groups. Findings/Results Morphine significantly increased CPP. While the blockade of the D1 receptor of the CeA reduced the acquisition phase of morphine-induced CPP. Moreover, the combination of D1 receptor antagonist and e-stim suppressed morphine-induced CPP, even it induced an aversion. Conclusion and implication The current study suggests that the administration of dopamine D1 receptor antagonist into the CeA in combination with e-stim could play a prominent role in morphine dependence.
Collapse
Affiliation(s)
- Zahra Jokar
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Saeed Khatamsaz
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|