1
|
McDonald AJ. Functional neuroanatomy of monoaminergic systems in the basolateral nuclear complex of the amygdala: Neuronal targets, receptors, and circuits. J Neurosci Res 2023; 101:1409-1432. [PMID: 37166098 PMCID: PMC10524224 DOI: 10.1002/jnr.25201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review discusses neuroanatomical aspects of the three main monoaminergic systems innervating the basolateral nuclear complex (BNC) of the amygdala (serotonergic, noradrenergic, and dopaminergic systems). It mainly focuses on immunohistochemical (IHC) and in situ hybridization (ISH) studies that have analyzed the relationship of specific monoaminergic inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of the monoaminergic modulation of BNC circuitry. First, light and electron microscopic IHC investigations identifying the main BNC neuronal subpopulations and characterizing their local circuitry, including connections with discrete PN compartments and other INs, are reviewed. Then, the relationships of each of the three monoaminergic systems to distinct PN and IN cell types, are examined in detail. For each system, the neuronal targets and their receptor expression are discussed. In addition, pertinent electrophysiological investigations are discussed. The last section of the review compares and contrasts various aspects of each of the three monoaminergic systems. It is concluded that the large number of different receptors, each with a distinct mode of action, expressed by distinct cell types with different connections and functions, should offer innumerable ways to subtlety regulate the activity of the BNC by therapeutic drugs in psychiatric diseases in which there are alterations of BNC monoaminergic modulatory systems, such as in anxiety disorders, depression, and drug addiction. It is suggested that an important area for future studies is to investigate how the three systems interact in concert at the neuronal and neuronal network levels.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
2
|
[6]-Shogaol Attenuates Oxaliplatin-Induced Allodynia through Serotonergic Receptors and GABA in the Spinal Cord in Mice. Pharmaceuticals (Basel) 2022; 15:ph15060726. [PMID: 35745645 PMCID: PMC9227032 DOI: 10.3390/ph15060726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Although oxaliplatin is a well-known anti-cancer agent used for the treatment of colorectal cancer, treated patients often experience acute cold and mechanical allodynia as side effects. Unfortunately, no optimal treatment has been developed yet. In this study, [6]-shogaol (10 mg/kg, i.p.), which is one of the major bioactive components of Zingiber officinale roscoe (Z. officinale), significantly alleviated allodynia induced by oxaliplatin (6 mg/kg, i.p.) injection. Cold and mechanical allodynia were assessed by acetone drop and von Frey filament tests, respectively. The analgesic effect of [6]-shogaol was blocked by the intrathecal injection of 5-HT1A, 5-HT3, and GABAB receptor antagonists, NAN-190 (1 μg), MDL-72222 (15 μg), and CGP 55845 (10 μg), respectively. Furthermore, oxaliplatin injection lowered the GABA concentration in the superficial laminae of the spinal dorsal horn, whereas [6]-shogaol injection significantly elevated it. The GAD (glutamic acid decarboxylase) 65 concentration also increased after [6]-shogaol administration. However, pre-treatment of NAN-190 completely inhibited the increased GABA induced by [6]-shogaol in the spinal dorsal horn, whereas MDL-72222 partially blocked the effect. Altogether, these results suggest that [6]-shogaol could attenuate oxaliplatin-induced cold and mechanical allodynia through 5-HT1A and 5-HT3 receptor antagonists located in the GABAergic neurons in the spinal dorsal horn in mice.
Collapse
|
3
|
de Kort AR, Joosten EA, Patijn J, Tibboel D, van den Hoogen NJ. Selective Targeting of Serotonin 5-HT1a and 5-HT3 Receptors Attenuates Acute and Long-Term Hypersensitivity Associated With Neonatal Procedural Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:872587. [PMID: 35571143 PMCID: PMC9091564 DOI: 10.3389/fpain.2022.872587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal painful procedures causes acute pain and trigger long-term changes in nociceptive processing and anxiety behavior, highlighting the need for adequate analgesia during this critical time. Spinal serotonergic receptors 5-HT1a and 5-HT3 play an important role in modulating incoming nociceptive signals in neonates. The current study aims to attenuate acute and long-term hypersensitivity associated with neonatal procedural pain using ondansetron (a 5-HT3 antagonist) and buspirone (a 5-HT1a agonist) in a well-established rat model of repetitive needle pricking. Sprague-Dawley rat pups of both sexes received ondansetron (3 mg/kg), buspirone (3 mg/kg) or saline prior to repetitive needle pricks into the left hind-paw from postnatal day 0-7. Control animals received tactile stimulation or were left undisturbed. Acute, long-term, and post-operative mechanical sensitivity as well as adult anxiety were assessed. Neonatal 5-HT1a receptor agonism completely reverses acute hypersensitivity from P0-7. The increased duration of postoperative hypersensitivity after re-injury in adulthood is abolished by 5-HT3 receptor antagonism during neonatal repetitive needle pricking, without affecting baseline sensitivity. Moreover, 5-HT1a and 5-HT3 receptor modulation decreases adult state anxiety. Altogether, our data suggests that targeted pharmacological treatment based on the modulation of spinal serotonergic network via the 5-HT1a and 5-HT3 receptors in neonates may be of use in treatment of neonatal procedural pain and its long-term consequences. This may result in a new mechanism-based therapeutic venue in treatment of procedural pain in human neonates.
Collapse
Affiliation(s)
- Anne R. de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nynke J. van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Yamaguchi C, Yamamoto D, Fujimaru Y, Asano T, Takaoka A. Acetaminophen Exerts an Analgesic Effect on Muscular Hyperalgesia in Repeated Cold-Stressed Rats through the Enhancement of the Descending Pain Inhibitory System Involving Spinal 5-HT 3 and Noradrenergic α 2 Receptors. Biol Pharm Bull 2021; 44:1067-1074. [PMID: 34135207 DOI: 10.1248/bpb.b21-00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Musculoskeletal and psychological complaints have increased with the widespread use of visual display terminals, and musculoskeletal pain is known to be closely related to stress. One method of experimentally inducing persistent muscle pain is repeated cold stress (RCS), and animals exposed to such stress exhibit a dysfunction in the descending pain inhibitory system. Acetaminophen (N-acetyl-p-aminophenol; APAP) is widely used to relieve several types of pain, including musculoskeletal pain, and is available as an OTC drug. However, the mechanism underlying its analgesic action has not yet been fully elucidated. In this study, we compared the analgesic effect of APAP on RCS-induced muscular hyperalgesia with those of other analgesics to identify its mechanism of action. The daily oral administration of APAP significantly suppressed the decrease in the mechanical withdrawal threshold caused by RCS, similar to the results for neurotropin but not for the cyclooxygenase inhibitor ibuprofen (IBP). Moreover, the intrathecal administration of antagonists of the 5-hydroxytryptamine (5-HT)3 receptor or α2-adrenoceptor significantly abolished the analgesic effect of APAP but not of IBP. These results suggest that the analgesic effect of APAP on RCS-induced muscular pain might be exerted due to the activation of the descending pathways involving the spinal 5-HT3 receptor or α2-adrenoceptor.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yukiko Fujimaru
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Toshiki Asano
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Akiko Takaoka
- Self-Medication R&D Laboratories, Taisho Pharmaceutical Co., Ltd
| |
Collapse
|
5
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Granisetron, a selective 5-HT3 antagonist, reduces L-3,4-dihydroxyphenylalanine-induced abnormal involuntary movements in the 6-hydroxydopamine-lesioned rat. Behav Pharmacol 2020; 32:43-53. [PMID: 33399295 DOI: 10.1097/fbp.0000000000000601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Administration of L-3,4-dihydroxyphenylalanine (L-DOPA) provides Parkinson's disease patients with effective symptomatic relief. However, long-term L-DOPA therapy is often marred by complications such as dyskinesia. We have previously demonstrated that serotonin type 3 (5-HT3) receptor blockade with the clinically available and highly selective antagonist ondansetron alleviates dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat. Here, we sought to explore the antidyskinetic efficacy of granisetron, another clinically available 5-HT3 receptor antagonist. Rats were rendered hemi-parkinsonian by 6-OHDA injection in the medial forebrain bundle. Following induction of stable abnormal involuntary movements (AIMs), granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) or vehicle was acutely administered in combination with L-DOPA and the severity of AIMs, both duration and amplitude, was determined. We also assessed the effect of granisetron on L-DOPA antiparkinsonian action by performing the cylinder test. Adding granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) to L-DOPA resulted in a significant reduction of AIMs duration and amplitude, with certain parameters being reduced by as much as 38 and 45% (P < 0.05 and P < 0.001, respectively). The antidyskinetic effect of granisetron was not accompanied by a reduction of L-DOPA antiparkinsonian action. These results suggest that 5-HT3 blockade may reduce L-DOPA-induced dyskinesia without impairing the therapeutic efficacy of L-DOPA. However, a U-shaped dose-response curve obtained with certain parameters may limit the therapeutic potential of this strategy and require further investigation.
Collapse
|
7
|
Belliveau S, Kang W, Bovaird S, Hamadjida A, Bédard D, Dancause N, Stroh T, Huot P. Stereological investigation of 5-HT 3 receptors in the substantia nigra and dorsal raphe nucleus in the rat. J Chem Neuroanat 2020; 111:101881. [PMID: 33160048 DOI: 10.1016/j.jchemneu.2020.101881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Serotonin (5-HT) is a common neurotransmitter in mammals, playing a central role in the regulation of various processes such as sleep, perception, cognitive and autonomic functions in the nervous system. Previous studies have demonstrated that 5-HT type 3 (5-HT3) receptors are expressed in either or both the substantia nigra (SN) and the dorsal raphe nucleus (DRN) in humans, marmosets, rats and Syrian hamsters. Here, we quantify the distribution of 5-HT3 receptors across these regions in the adult rat. Fluorescent immunohistochemistry was performed on sections of rat brain covering the entire rostro-caudal extent of the SN and DRN with antibodies specific to the 5-HT3A receptor subunit, as well as others targeting the monoaminergic markers tyrosine hydroxylase (TH) and the 5-HT transporter (SERT). The number of 5-HT3A receptor-positive, TH-positive (n = 28,428 ± 888, Gundersen's m = 1 coefficient of error [CE] = 0.05) and SERT-positive (n = 12,852 ± 462, CE = 0.06) cells were estimated in both the SN and the DRN using stereology. We found that 5-HT3A receptor-positive cells are present in the SNr (n = 1250 ± 64, CE = 0.24), but they did not co-localise with TH-positive cells, nor were they present in the SNc. In contrast, no 5-HT3A receptor-positive cells were found in the DRN. These results support the presence of 5-HT3 receptors in the SN, but not in the DRN, and do not support their expression on monoaminergic cells within these two brain areas.
Collapse
Affiliation(s)
| | - Woojin Kang
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Samantha Bovaird
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adjia Hamadjida
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Dominique Bédard
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Thomas Stroh
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Philippe Huot
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Department of Neurosciences, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
8
|
Sub-chronic vortioxetine (but not escitalopram) normalizes brain rhythm alterations and memory deficits induced by serotonin depletion in rats. Neuropharmacology 2020; 178:108238. [DOI: 10.1016/j.neuropharm.2020.108238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
|
9
|
Ondansetron, a highly selective 5-HT3 receptor antagonist, reduces L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease. Eur J Pharmacol 2020; 871:172914. [DOI: 10.1016/j.ejphar.2020.172914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
|
10
|
Hypophagia induced by hindbrain serotonin is mediated through central GLP-1 signaling and involves 5-HT2C and 5-HT3 receptor activation. Neuropsychopharmacology 2019; 44:1742-1751. [PMID: 30959513 PMCID: PMC6784912 DOI: 10.1038/s41386-019-0384-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
The overlap in neurobiological circuitry mediating the physiological and behavioral response to satiation and noxious/stressful stimuli are not well understood. The interaction between serotonin (5-HT) and glucagon-like peptide-1 (GLP-1) could play a role as upstream effectors involved in mediating associations between anorectic and noxious/stressful stimuli. We hypothesize that 5-HT acts as an endogenous modulator of the central GLP-1 system to mediate satiation and malaise in rats. Here, we investigate whether interactions between central 5-HT and GLP-1 signaling are behaviorally and physiologically relevant for the control of food intake and pica (i.e., behavioral measure of malaise). Results show that the anorexia and body weight changes induced by administration of exogenous hindbrain 5-HT are dependent on central GLP-1 receptor signaling. Furthermore, anatomical evidence shows mRNA expression of 5-HT2C and 5-HT3 receptors on GLP-1-producing preproglucagon (PPG) neurons in the medial nucleus tractus solitarius by fluorescent in situ hybridization, suggesting that PPG neurons are likely to express both of these receptors. Behaviorally, the hypophagia induced by the pharmacological activation of both of these receptors is also dependent on GLP-1 signaling. Finally, 5-HT3, but not 5-HT2C receptors, are required for the anorectic effects of the interoceptive stressor LiCl, suggesting the hypophagia induced by these 5-HT receptors may be driven by different mechanisms. Our findings highlight 5-HT as a novel endogenous modulator of the central GLP-1 system and suggest that the central interaction between 5-HT and GLP-1 is involved in the control of food intake in rats.
Collapse
|
11
|
Perez-Palomar B, Mollinedo-Gajate I, Berrocoso E, Meana JJ, Ortega JE. Serotonin 5-HT 3 receptor antagonism potentiates the antidepressant activity of citalopram. Neuropharmacology 2018; 133:491-502. [PMID: 29477299 DOI: 10.1016/j.neuropharm.2018.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Activation of serotonin 5-HT3 receptor (5HT3R) in the locus coeruleus (LC), the principal somatodendritic noradrenergic area, decreases LC firing activity and noradrenaline (NA) release in prefrontal cortex (PFC). Blockade of 5HT3R in coadministration with selective serotonin reuptake inhibitors (SSRIs) has been proposed as a potential strategy to accelerate the onset of action of SSRIs. Dual-probe microdialysis in rats was used to evaluate the involvement of 5HT3R in the in vivo effect exerted by the SSRI citalopram on NA release. Besides, forced swimming test (FST) was carried out in mice to evaluate the antidepressant-like effect of citalopram in combination with a 5HT3R antagonist (Y25130). Systemic administration of the 5HT3R agonist SR57227 (10 mg/kg i.p.) increased NA in LC (Emax = 200 ± 27%) and PFC (Emax = 133 ± 2%). The increase in PFC was enhanced in local presence into LC of Y25130 (50 μM) (Emax = 296 ± 41%) suggesting an inhibitory function on NA release exerted by the activation of 5HT3R located in somatodendritic areas. Citalopram administration (10 mg/kg i.p.) increased NA in LC (Emax = 185 ± 11%) and decreased it in PFC (Emax = -35 ± 7%). Intra-LC (50 μM) or systemic co-administration of Y25130 (10 mg/kg i.p.) with citalopram (10 mg/kg i.p.) switched NA release in the PFC from an inhibition to a stimulatory effect. In mice FST, systemic coadministration of citalopram (2.5 mg/kg i.p.) and Y25130 (10 mg/kg i.p.) potentiated the decrease of immobility time through the increase of both swimming and climbing behaviours. These results suggest that the addition of a 5HT3R antagonist to SSRIs could represent a feasible strategy to improve antidepressant response.
Collapse
Affiliation(s)
- Blanca Perez-Palomar
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Irene Mollinedo-Gajate
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Biocruces Health Research Institute, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain; Biocruces Health Research Institute, Spain.
| |
Collapse
|
12
|
Martin V, Riffaud A, Marday T, Brouillard C, Franc B, Tassin JP, Sevoz-Couche C, Mongeau R, Lanfumey L. Response of Htr3a knockout mice to antidepressant treatment and chronic stress. Br J Pharmacol 2017; 174:2471-2483. [PMID: 28493335 DOI: 10.1111/bph.13857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE It has recently been suggested that 5-HT3 receptor blockade enhances the efficacy of selective 5-HT (serotonin) reuptake inhibitor (SSRI) antidepressants and may reverse stress-induced deficits in rodents. EXPERIMENTAL APPROACH To further explore this hypothesis, we used mice lacking the 5-HT3 receptor (Htr3a KO) and their wild-type (WT) controls to assess their response in behavioural paradigms relevant to anxiety and depression. Mice were studied under basal, antidepressant treatments and chronic social defeat stress (CSDS) conditions. KEY RESULTS In basal conditions, Htr3a KO mice displayed anxiolytic- and antidepressant-like behaviours in the elevated plus maze, the social interaction and the forced swim tests (FST), but behaved as WT mice in response to acute citalopram in the FST. However, the effects of fluoxetine were blunted in Htr3a KO mice in these same tests. In an in vitro electrophysiological paradigm, a low-dose citalopram treatment triggered 5-HT1A receptor desensitization only in the dorsal raphe nucleus of Htr3a KO, although a high dose desensitized 5-HT1A autoreceptor function equally in Htr3a KO and WT mice, suggesting that citalopram may become effective at lower doses when 5-HT3 receptors are inactivated. In addition, Htr3a deletion blocked CSDS-induced modification in the cortical expression of two genes involved in oxidative stress, CaMKIIa and SOD1. CONCLUSIONS AND IMPLICATIONS Taken together, these data show that Htr3a deletion promotes SSRI efficacy and prevents the occurrence of stress-induced deleterious effects, suggesting that the 5-HT3 receptor may represent an interesting target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Vincent Martin
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, Paris, France
| | - Armance Riffaud
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, Paris, France
| | - Tevrasamy Marday
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, Paris, France
| | - Charly Brouillard
- Inserm UMR S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Université Pierre et Marie Curie, Paris, France
| | - Bernard Franc
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, Paris, France
| | - Jean-Pol Tassin
- Inserm UMR S1130, Neurosciences Paris Seine, Université Pierre et Marie Curie, Paris, France
| | - Caroline Sevoz-Couche
- Inserm UMR S1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Université Pierre et Marie Curie, Paris, France
| | - Raymond Mongeau
- EA 4475, Pharmacologie de la circulation cérébrale, Université Paris Descartes, Paris, France
| | - Laurence Lanfumey
- Inserm UMR S894, Centre de Psychiatrie et Neuroscience, Université Paris Descartes, Paris, France
| |
Collapse
|
13
|
Koyama Y, Kondo M, Shimada S. Building a 5-HT3A Receptor Expression Map in the Mouse Brain. Sci Rep 2017; 7:42884. [PMID: 28276429 PMCID: PMC5343592 DOI: 10.1038/srep42884] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Khalilzadeh E, Saiah GV. The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats. Res Pharm Sci 2017. [PMID: 28626482 PMCID: PMC5465833 DOI: 10.4103/1735-5362.207205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to assess the effect of intra-habenular injection of morphine on acute trigeminal pain in rats. Also here, we examined the involvement of raphe nucleus opioid and 5HT3 receptors on the antinociceptive activity of intra habenular morphine to explore the possibility of existence of descending antinociceptive relay between the habenula and raphe nucleus. The numbers of eye wiping response elicited by applying a drop (40 μL) of NaCl (5 M) solution on the corneal surface were taken as an index of acute trigeminal nociception. Intra habenular microinjection of morphine at a dose of 2 μg was without effect, whereas at doses of 5 and 8 μg significantly produced antinociception. Microinjection of naltrexone (4 μg) and ondansetron (1 μg) into the dorsal raphe nucleus prior to intra-habenular saline did not produce any significant effect on corneal pain perception. Pretreatment of the raphe nucleus with ondansetron but not naltrexone prevented intra habenular morphine (8 μg) induced antinociception. Also, intra habenular injection of lidocaine (2%, 0.5 μL reduced corneal pain response. Moreover, intra-habenular microinjection of L-glutamic acid (1 and 2 μg/site) did not produce any analgesic activity in this model of pain. In conclusion, the present results suggest that the activation of the habenular μ opioid receptor by microinjection of morphine or inhibition of habenular neurons by microinjection of lidocaine produced an analgesic effect in the acute trigeminal model of pain in rats. The analgesic effect of intra habenular morphine was blocked by intra-dorsal raphe injection of serotonin 5-HT3 antagonist.
Collapse
Affiliation(s)
- Emad Khalilzadeh
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| | - Gholamreza Vafaei Saiah
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| |
Collapse
|
15
|
Bobinski F, Ferreira TAA, Córdova MM, Dombrowski PA, da Cunha C, Santo CCDE, Poli A, Pires RGW, Martins-Silva C, Sluka KA, Santos ARS. Role of brainstem serotonin in analgesia produced by low-intensity exercise on neuropathic pain after sciatic nerve injury in mice. Pain 2016; 156:2595-2606. [PMID: 26447701 DOI: 10.1097/j.pain.0000000000000372] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physical exercise is a low-cost, safe, and efficient intervention for the reduction of neuropathic chronic pain in humans. However, the underlying mechanisms for how exercise reduces neuropathic pain are not yet well understood. Central monoaminergic systems play a critical role in endogenous analgesia leading us to hypothesize that the analgesic effect of low-intensity exercise occurs through activation of monoaminergic neurotransmission in descending inhibitory systems. To test this hypothesis, we induced peripheral nerve injury (PNI) by crushing the sciatic nerve. The exercise intervention consisted of low-intensity treadmill running for 2 weeks immediately after injury. Animals with PNI showed an increase in pain-like behaviors that were reduced by treadmill running. Reduction of serotonin (5-hydroxytryptamine) synthesis using the tryptophan hydroxylase inhibitor para-chlorophenylalanine methyl ester prevented the analgesic effect of exercise. However, blockade catecholamine synthesis with the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine had no effect. In parallel, 2 weeks of exercise increased brainstem levels of the 5-HT and its metabolites (5-hydroxyindoleacetic acid), decreased expression of the serotonin transporter, and increased expression of 5-HT receptors (5HT-1B, 2A, 2C). Finally, PNI-induced increase in inflammatory cytokines, tumor necrosis factor-alpha, and interleukin-1 beta, in the brainstem, was reversed by 2 weeks of exercise. These findings provide new evidence indicating that low-intensity aerobic treadmill exercise suppresses pain-like behaviors in animals with neuropathic pain by enhancing brainstem 5-HT neurotransmission. These data provide a rationale for the analgesia produced by exercise to provide an alternative approach to the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Franciane Bobinski
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianopolis, Brazil Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianopolis, Brazil Laboratory of Molecular and Behavioral Neurobiology, Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianopolis, Brazil Department of Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A New Mechanism of Receptor Targeting by Interaction between Two Classes of Ligand-Gated Ion Channels. J Neurosci 2016; 36:1456-70. [PMID: 26843630 DOI: 10.1523/jneurosci.2390-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The 5-HT3 receptors are serotonin-gated ion channels that physically couple with purinergic P2X2 receptors to trigger a functional cross-inhibition leading to reciprocal channel occlusion. Although this functional receptor-receptor coupling seems to serve a modulatory role on both channels, this might not be its main physiological purpose. Using primary cultures of rat hippocampal neurons as a quantitative model of polarized targeting, we show here a novel function for this interaction. In this model, 5-HT3A receptors did not exhibit by themselves the capability of distal targeting in dendrites and axons but required the presence of P2X2R for their proper subcellular localization. 5-HT3AR distal targeting occurred with a delayed time course and exhibited a neuron phenotype dependency. In the subpopulation of neurons expressing endogenous P2X2R, 5-HT3AR distal neuritic localization correlated with P2X2R expression and could be selectively inhibited by P2X2R RNA interference. Cotransfection of both receptors revealed a specific colocalization, cotrafficking in common surface clusters, and the axonal rerouting of 5-HT3AR. The physical association between the two receptors was dependent on the second intracellular loop of the 5-HT3A subunit, but not on the P2X2R C-terminal tail that triggers the functional cross-inhibition with the 5-HT3AR. Together, these data establish that 5-HT3AR distal targeting in axons and dendrites primarily depends on P2X2R expression. Because several P2XR have now been shown to functionally interact with several other members of the 4-TMD family of receptor channels, we propose to reconsider the real functional role for this receptor family, as trafficking partner proteins dynamically involved in other receptors targeting. SIGNIFICANCE STATEMENT So far, receptor targeting mechanisms were found to involve intracellular partner proteins or supramolecular complexes that couple receptors to cytoskeletal elements and recruit them into cargo vesicles. In this paper, we describe a new trafficking mechanism for the neuronal serotonin 5-HT3A ionotropic channel receptor, in which the role of routing partner is endowed by a functionally interacting purinergic receptor: the P2X2 receptor. This work not only unveils the mechanism by which 5-HT3 receptors can reach their axonal localization required for the control of neurotransmitter release, but also suggests that, in addition to their modulatory role, the family of P2X receptors could have a previously undescribed functional role of trafficking partner proteins dynamically involved in the targeting of other receptors.
Collapse
|
17
|
Sévoz-Couche C, Brouillard C. Key role of 5-HT 3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity. Neurosci Biobehav Rev 2016; 74:423-432. [PMID: 27131969 DOI: 10.1016/j.neubiorev.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
| | - Charly Brouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
18
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Abstract
In one of his earlier papers, Lex Cools stated that the 'concept of an impaired balance between the in series connected […] dopamine system, […] 5-HT system and […] noradrenaline system offers a single coherent and integrated theory of schizophrenia' (Cools, 1975). Since then, considerable attention has focused on the interaction between dopamine and 5-HT and it is now well accepted that most antipsychotics (especially the second-generation drugs) modulate both dopaminergic and serotonergic receptors. However, the vast majority of research has focused on the 5-HT1A, 5-HT2A and 5-HT2C receptors. In the present paper, we review the literature pertaining to the 5-HT3 receptor, the only ionotropic 5-HT receptor. We discuss both the interactions between 5-HT3 receptors and dopamine, and the animal and human literature investigating the role of 5-HT3 receptors in schizophrenia. The results show that the interactions between 5-HT3 receptors and dopamine are complex, but that 5-HT3 receptors do not have a strong influence on the positive symptoms of schizophrenia. However, when added to standard antipsychotic medication, several recent studies have found that 5-HT3 receptor antagonists can induce a statistically significantly improvement in negative and cognitive symptoms. The implications of these findings in relation to animal modelling and drug development are discussed.
Collapse
|
20
|
Okamoto K, Katagiri A, Rahman M, Thompson R, Bereiter DA. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats. Neuroscience 2015; 299:35-44. [PMID: 25913635 DOI: 10.1016/j.neuroscience.2015.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
Abstract
Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1-2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1-2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1-2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high-threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1-2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception.
Collapse
Affiliation(s)
- K Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States.
| | - A Katagiri
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - M Rahman
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - R Thompson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - D A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| |
Collapse
|
21
|
Bétry C, Overstreet D, Haddjeri N, Pehrson A, Bundgaard C, Sanchez C, Mørk A. A 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant. Pharmacol Biochem Behav 2015; 131:136-42. [DOI: 10.1016/j.pbb.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022]
|
22
|
The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats. Eur J Pharmacol 2015; 749:49-55. [DOI: 10.1016/j.ejphar.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 01/17/2023]
|
23
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
24
|
Involvement of serotonin 5-HT3 receptors in the modulation of noradrenergic transmission by serotonin reuptake inhibitors: a microdialysis study in rat brain. Psychopharmacology (Berl) 2013; 229:331-44. [PMID: 23636303 DOI: 10.1007/s00213-013-3112-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs), in addition to being able to enhance serotonergic neurotransmission, are able to modulate other brain systems involved in depression. OBJECTIVES This study evaluates the neurochemical effect of the SSRI citalopram on brain noradrenergic activity and the serotonin receptor involved in this effect. METHODS Dual-probe microdialysis in the locus coeruleus (LC) and prefrontal cortex (PFC) was performed in freely awake rats. RESULTS Systemic citalopram (10 mg/kg, i.p.) increased noradrenaline (NA) in the LC (E max = 141 ± 13%) and simultaneously decreased NA in the PFC (Emax = -46 ± 7%). In the local presence into the LC of the α2-adrenoceptor antagonist RS79948 (1 μM), systemic citalopram increased NA in the LC (Emax = 157 ± 25%) and PFC (Emax = 175 ± 24%). Local citalopram (0.1-100 μM) into the LC induced NA increase in the LC (Emax = 210 ± 25%) and decrease in the PFC (Emax = -38 ± 9%). Local LC citalopram effect was abolished by LC presence of the 5-HT3 receptor antagonist MDL72222 (1 μM) but not the 5-HT1/2 receptor antagonist methiothepin (1 μM). Systemic citalopram in the LC presence of MDL72222 did not modify NA in the LC but increased NA in the PFC (Emax = 158 ± 26%). Local citalopram into the PFC enhanced NA (Emax = 376 ± 18%) in the area, which was prevented by MDL72222. CONCLUSIONS The SSRI citalopram modulates central noradrenergic neurotransmission by activation, through endogenous serotonin, of 5-HT3 receptors expressed in the somatodendritic (LC) and terminal (PFC) areas, which subsequently promote an enhancement of local NA. Therefore, 5-HT3 receptors and somatodendritic α2-adrenoceptors in the LC play an important role in the global effect of SSRIs.
Collapse
|
25
|
Antidepressant-like activity of 2-(4-phenylpiperazin-1-yl)-1, 8-naphthyridine-3-carboxylic acid (7a), a 5-HT3 receptor antagonist in behaviour based rodent models: Evidence for the involvement of serotonergic system. Pharmacol Biochem Behav 2013; 109:91-7. [DOI: 10.1016/j.pbb.2013.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 04/26/2013] [Accepted: 05/04/2013] [Indexed: 11/22/2022]
|
26
|
Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters--a rat microdialysis and electrophysiology study. Eur Neuropsychopharmacol 2013; 23:133-45. [PMID: 22612991 DOI: 10.1016/j.euroneuro.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/12/2012] [Accepted: 04/14/2012] [Indexed: 11/22/2022]
Abstract
The monoaminergic network, including serotonin (5-HT), norepinephrine (NE), and dopamine (DA) pathways, is highly interconnected and has a well-established role in mood disorders. Preclinical research suggests that 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors as well as the 5-HT transporter (SERT), may have important roles in treating depression. This study evaluated the neuropharmacological profile of Lu AA21004, a novel multimodal antidepressant combining 5-HT3 and 5-HT7 receptor antagonism, 5-HT1B receptor partial agonism, 5-HT1A receptor agonism, and SERT inhibition in recombinant cell lines. Extracellular 5-HT, NE and DA levels were evaluated in the ventral hippocampus (vHC), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) after acute and subchronic treatment with Lu AA21004 or escitalopram. The acute effects of LuAA21004 on NE and DA neuronal firing were also evaluated in the locus coeruleus (LC) and ventral tegmental area (VTA), respectively. Acute Lu AA21004 dose-dependently increased 5-HT in the vHC, mPFC and NAc. Maximal 5-HT levels in the vHC were higher than those in the mPFC. Furthermore, mPFC 5-HT levels were increased at low SERT occupancy levels. In the vHC and mPFC, but not the NAc, high Lu AA21004 doses increased NE and DA levels. Lu AA21004 slightly decreased LC NE neuronal firing and had no effect on VTA DA firing. Results are discussed in context of occupancy at 5-HT3, 5-HT1B and 5-HT1A receptors and SERT. In conclusion, Lu AA21004, acting via two pharmacological modalities, 5-HT receptor modulation and SERT inhibition, results in a brain region-dependent increase of multiple neurotransmitter concentrations.
Collapse
|
27
|
Sévoz-Couche C, Brouillard C, Camus F, Laude D, De Boer SF, Becker C, Benoliel JJ. Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats. J Physiol 2013; 591:1871-87. [PMID: 23297312 DOI: 10.1113/jphysiol.2012.247791] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Anxiety disorders in humans reduce both the heart rate variability (HRV) and the sensitivity of the cardiac baroreflex (BRS). Both may contribute to sudden death. To elucidate the mechanisms underlying these alterations, male rats were subjected to social defeat sessions on four consecutive days. Five days later, the rats were found to be in an anxiety-like state. At this time point, we analysed HRV and BRS in the defeated rats, with or without treatment with the anxiolytic chlordiazepoxide (CDZ). HRV was reduced after social defeat, due to changes in the autonomic balance favouring the sympathetic over the parasympathetic component. Spontaneous and pharmacological baroreflex gains were also reduced. CDZ abolished anxiety-like symptoms as well as HRV and BRS alterations. Inhibition of the dorsomedial hypothalamus (DMH) with muscimol reversed all cardiovascular alterations, whereas blockade of the nucleus tractus solitarii (NTS) 5-HT3 receptor by the local or systemic administration of granisetron restored only baroreflex gains and the parasympathetic component of HRV. In conclusion, repeated social defeat in the rat lead to an anxiety-like state that was associated with lasting reduction in HRV and baroreflex gains. The DMH and the NTS were responsible for these chronic cardiovascular alterations. These regions may therefore constitute new therapeutic targets for reducing cardiac dysfunction and fibrillation in anxiety disorders.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- CR-ICM, UPMC/INSERM, UMR-S 975, CNRS UMR 7225, Faculté de médecine UPMC, Site Pitie-Salpêtrière, Paris F-75013, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
5-Hydroxytryptamine type 3 (5-HT(3)) receptors are cation-selective Cys loop receptors found in both the central and peripheral nervous systems. There are five 5-HT(3) receptor subunits (A-E), and all functional receptors require at least one A subunit. Regions from noncontiguous parts of the subunit sequence contribute to the agonist-binding site, and the roles of a range of amino acid residues that form the binding pocket have been identified. Drugs that selectively antagonize 5-HT(3) receptors (the "setrons") are the current gold standard for treatment of chemotherapy-induced and postoperative nausea and vomiting and have potential for the treatment of a range of other conditions.
Collapse
Affiliation(s)
- Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
29
|
Liu LN, Sun ZG, Zhang XM, Zhou L, Tian C, Chen L, Shao M, Shi HL, Guo HY. Analgesic mechanisms of Fagopyrum cymosum extracts in rats with irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2012; 20:1290-1295. [DOI: 10.11569/wcjd.v20.i15.1290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of Fagopyrum cymosum extracts (Fag) on visceral hypersensitivity in rats with irritable bowel syndrome (IBS)-like colon irritation (CI) and to explore the possible mechanisms involved.
METHODS: IBS-like models were created using neonatal CI method. CI adult rats were given Fag intragastrically for 2 wk, and visceral sensitivity was then evaluated using abdominal withdrawal reflex (AWR) score. The expression of 5-hydroxytryptamine (5-HT) in the spinal cord was detected by immunohistochemistry and that of 5-HT1A receptor (5-HT1AR) and 5-HT3A receptor (5-HT3AR) was detected by Western blot.
RESULTS: Compared to control rats, AWR scores in CI rats were significantly increased (20 mmHg: 0.625 ± 0.518 vs 1.333 ± 0.778; 30 mmHg: 0.750 ± 0.463 vs 1.667 ± 0.888; 40 mmHg: 1.125 ± 0.641 vs 2.000 ± 0.739; 50 mmHg: 1.500 ± 0.926 vs 2.583 ± 0.793; 60 mmHg: 2.125 ± 0.991 vs 3.083 ± 0.669; all P < 0.05). In the spinal cord, the expression of 5-HT and 5-HT3AR was enhanced and that of 5-HT1AR expression was reduced in CI rats compared to control rats (all P < 0.01). Fag at a high dose could markedly reduce AWR scores (20 mmHg: 0.250 ± 0.002; 30 mmHg: 0.875 ± 0.044; 40 mmHg: 1.250 ± 0.036; 50 mmHg: 1.875 ± 0.050; 60 mmHg: 2.625 ± 0.037; all P < 0.05), down-regulate the expression of 5-HT and 5-HT3AR, and up-regulate the expression of 5-HT1AR (all P < 0.05) in spinal cord (P < 0.05) in CI rats. Fag at a low dose had no significant effect on CI rats.
CONCLUSION: Fag can exert an analgesic role in IBS-like CI rats by regulating 5-HT and its receptors in the spinal cord.
Collapse
|
30
|
Setoguchi D, Nakamura M, Yatsuki H, Watanabe E, Tateishi Y, Kuwaki T, Oda S. Experimental examination of anti-inflammatory effects of a 5-HT3 receptor antagonist, tropisetron, and concomitant effects on autonomic nervous function in a rat sepsis model. Int Immunopharmacol 2011; 11:2073-8. [DOI: 10.1016/j.intimp.2011.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/25/2022]
|
31
|
Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther 2011; 130:338-47. [PMID: 21356241 PMCID: PMC3103470 DOI: 10.1016/j.pharmthera.2011.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
The 5-Hydroxytryptamine3 (5-HT3) receptor is a member of the cys-loop family of ligand gated ion channels, of which the nicotinic acetylcholine receptor is the prototype. All other 5-HT receptors identified to date are metabotropic receptors. The 5-HT3 receptor is present in the central and peripheral nervous systems, as well as a number of non-nervous tissues. As an ion channel that is permeable to the cations, Na(+), K(+), and Ca(2+), the 5-HT3 receptor mediates fast depolarizing responses in pre- and post-synaptic neurons. As such, 5-HT3 receptor antagonists that are used clinically block afferent and efferent synaptic transmission. The most well established physiological roles of the 5-HT3 receptor are to coordinate emesis and regulate gastrointestinal motility. Currently marketed 5-HT3 receptor antagonists are indicated for the treatment of chemotherapy, radiation, and anesthesia-induced nausea and vomiting, as well as irritable bowel syndrome. Other therapeutic uses that have been explored include pain and drug addiction. The 5-HT3 receptor is one of a number of receptors that play a role in mediating nausea and vomiting, and as such, 5-HT3 receptor antagonists demonstrate the greatest anti-emetic efficacy when administered in combination with other drug classes.
Collapse
Affiliation(s)
- Tina K Machu
- Dept. of Medical Education and Dept. of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX 76107-2699, USA.
| |
Collapse
|
32
|
Kilpatrick LA, Labus JS, Coveleskie K, Hammer C, Rappold G, Tillisch K, Bueller JA, Suyenobu B, Jarcho JM, McRoberts JA, Niesler B, Mayer EA. The HTR3A polymorphism c. -42C>T is associated with amygdala responsiveness in patients with irritable bowel syndrome. Gastroenterology 2011; 140:1943-51. [PMID: 21420406 PMCID: PMC3757951 DOI: 10.1053/j.gastro.2011.03.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/02/2011] [Accepted: 03/07/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS 5-Hydroxytryptamine (5-HT)3 receptor (5-HT3R) antagonists are effective in treating patients with irritable bowel syndrome (IBS) and have anxiolytic effects. Their therapeutic effects are related, in part, to reducing amygdala engagement during expected visceral pain. A single nucleotide polymorphism in HTR3A, c.-42C>T;(C178T; rs1062613), is associated with altered reactivity of the amygdala during emotional face processing in healthy subjects (controls). We evaluated the influence of this single nucleotide polymorphism on amygdala reactivity to emotional faces and nonemotional stimuli in female patients with IBS and controls. METHODS We measured brain responses during an affect-matching paradigm in 54 women (26 with IBS, 29 controls) using functional magnetic resonance imaging. We examined associations between HTR3A c.-42C>T genotype (C/C vs T carrier) and responses in amygdala and other regions of brain that expressed high levels of 5-HT3R. RESULTS The C/C genotype was associated with greater anxiety symptoms in patients with IBS and controls and increased activation of the amygdala under emotional and nonemotional conditions. Among patients with IBS, C/C genotype was associated with greater symptom ratings. A subset of IBS patients with the C/C genotype had increased amygdala responses to nonemotional stimuli, compared with other subjects with C/C genotype. CONCLUSIONS Regardless of diagnosis, the C/C genotype of the c.-42C>T polymorphism in HTR3A, compared with T carrier status, is associated with increased anxiety and amygdala responsiveness during emotional and nonemotional tasks. This polymorphism was associated with severity of IBS symptoms. Although this genotype is not sufficient for diagnosis of IBS, it is associated with severity of symptoms.
Collapse
Affiliation(s)
- LA Kilpatrick
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - JS Labus
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Psychiatry & Biobehavioral Sciences, Ahmanson-Lovelace Brain Mapping Center, UCLA, Brain Research Institute, David Geffen School of Medicine, UCLA
| | - K Coveleskie
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - C Hammer
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | - G Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | - K Tillisch
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - JA Bueller
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - B Suyenobu
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - JM Jarcho
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - JA McRoberts
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA
| | - B Niesler
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | - EA Mayer
- Center for Neurobiology of Stress, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Medicine, Ahmanson-Lovelace Brain Mapping Center, UCLA, Department of Psychiatry & Biobehavioral Sciences, Ahmanson-Lovelace Brain Mapping Center, UCLA, Brain Research Institute, David Geffen School of Medicine, UCLA
| |
Collapse
|
33
|
Song Z, Meyerson BA, Linderoth B. Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 2011; 152:1666-1673. [PMID: 21514998 DOI: 10.1016/j.pain.2011.03.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/03/2011] [Accepted: 03/08/2011] [Indexed: 12/12/2022]
Abstract
Spinal cord stimulation (SCS) is extensively employed in the management of neuropathic pain, but the underlying mechanisms are only partially understood. Recently, we demonstrated that the pain-relieving effect of SCS appears to involve the spinal serotonin system, and the present study aimed at identifying the types of the spinal serotonin receptors involved. Experiments were performed on rats with neuropathy produced by partial ligation of the sciatic nerve. Tactile sensitivity was assessed using von Frey filaments, and cold and heat sensitivity with cold spray and radiant heat, respectively. Selective 5-HT receptor antagonists, methiothepin (5-HT(1,6,7)), ketanserin tartrate (5-HT(2A)), TICM (5-HT(3)), SDZ-205,557 (5-HT(4)), as well as receptor agonists, α-m-5-HT (5-HT(2)), m-CPBG (5-HT(3)) in per se ineffective doses, or vehicle, were administrated intrathecally 5 minutes prior to the application of SCS. Ketanserin and SDZ-205,557 significantly attenuated the suppressive effect of SCS on tactile hypersensitivity, while methiothepin and TICM were ineffective. The suppressive effect on cold hypersensitivity of SCS was counteracted by ketanserin only. None of the 5-HT receptor antagonists attenuated the suppressive effect on heat hyperalgesia of SCS. Subeffective doses of α-m-5-HT and m-CPBG enhanced the suppressive effect of SCS on tactile hypersensitivity. The enhancing effect of m-CPBG was abolished by a γ-aminobutyric acid (GABA)(A) or GABA(B) antagonist intrathecally. These results suggest that the activation of 5-HT(2A), 5-HT(3), and 5-HT(4) receptors plays an important role in SCS-induced relief of neuropathic pain. The activation of 5-HT(3) receptors appears to operate via spinal GABAergic interneurons.
Collapse
Affiliation(s)
- Zhiyang Song
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Abstract
Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.
Collapse
|
35
|
Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev 2011; 15:269-81. [PMID: 21459634 DOI: 10.1016/j.smrv.2010.11.003] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 11/27/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022]
Abstract
Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) functions predominantly to promote wakefulness (W) and to inhibit REM (rapid eye movement) sleep (REMS). Yet, under certain circumstances the neurotransmitter contributes to the increase in sleep propensity. Most of the serotonergic innervation of the cerebral cortex, amygdala, basal forebrain (BFB), thalamus, preoptic and hypothalamic areas, raphe nuclei, locus coeruleus and pontine reticular formation comes from the dorsal raphe nucleus (DRN). The 5-HT receptors can be classified into at least seven classes, designated 5-HT(1-7). The 5-HT(1A) and 5-HT(1B) receptor subtypes are linked to the inhibition of adenylate cyclase, and their activation evokes a membrane hyperpolarization. The actions of the 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes are mediated by the activation of phospholipase C, with a resulting depolarization of the host cell. The 5-HT(3) receptor directly activates a 5-HT-gated cation channel which leads to the depolarization of monoaminergic, aminoacidergic and cholinergic cells. The primary signal transduction pathway of 5-HT(6) and 5-HT(7) receptors is the stimulation of adenylate cyclase which results in the depolarization of the follower neurons. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type counterparts, which could be related to the absence of a postsynaptic inhibitory effect on REM-on neurons of the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT). 5-HT(2A) and 5-HT(2C) receptor knock-out mice show a significant increase of W and a reduction of slow wave sleep (SWS) which has been ascribed to the increase of catecholaminergic neurotransmission involving mainly the noradrenergic and dopaminergic systems. Sleep variables have been characterized, in addition, in 5-HT(7) receptor knock-out mice; the mutants spend less time in REMS that their wild-type counterparts. Direct infusion of the 5-HT(1A) receptor agonists 8-OH-DPAT and flesinoxan into the DRN significantly enhances REMS in the rat. In contrast, microinjection of the 5-HT(1B) (CP-94253), 5-HT(2A/2C) (DOI), 5-HT(3) (m-chlorophenylbiguanide) and 5-HT(7) (LP-44) receptor agonists into the DRN induces a significant reduction of REMS. Systemic injection of full agonists at postsynaptic 5-HT(1A) (8-OH-DPAT, flesinoxan), 5-HT(1B) (CGS 12066B, CP-94235), 5-HT(2C) (RO 60-0175), 5-HT(2A/2C) (DOI, DOM), 5-HT(3) (m-chlorophenylbiguanide) and 5-HT(7) (LP-211) receptors increases W and reduces SWS and REMS. Of note, systemic administration of the 5-HT(2A/2C) receptor antagonists ritanserin, ketanserin, ICI-170,809 or sertindole at the beginning of the light period has been shown to induce a significant increase of SWS and a reduction of REMS in the rat. Wakefulness was also diminished in most of these studies. Similar effects have been described following the injection of the selective 5-HT(2A) receptor antagonists volinanserin and pruvanserin and of the 5-HT(2A) receptor inverse agonist nelotanserin in rodents. In addition, the effects of these compounds have been studied on the sleep electroencephalogram of subjects with normal sleep. Their administration was followed by an increase of SWS and, in most instances, a reduction of REMS. The administration of ritanserin to poor sleepers, patients with chronic primary insomnia and psychiatric patients with a generalized anxiety disorder or a mood disorder caused a significant increase in SWS. The 5-HT(2A) receptor inverse agonist APD-125 induced also an increase of SWS in patients with chronic primary insomnia. It is known that during the administration of benzodiazepine (BZD) hypnotics to patients with insomnia there is a further reduction of SWS and REMS, whereas both variables tend to remain decreased during the use of non-BZD derivatives (zolpidem, zopiclone, eszopiclone, zaleplon). Thus, the association of 5-HT(2A) antagonists or 5-HT(2A) inverse agonists with BZD and non-BZD hypnotics could be a valid alternative to normalize SWS in patients with primary or comorbid insomnia.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, Montevideo 11600, Uruguay.
| |
Collapse
|
36
|
Magalhães CP, de Freitas MFL, Nogueira MI, Campina RCDF, Takase LF, de Souza SL, de Castro RM. Modulatory role of serotonin on feeding behavior. Nutr Neurosci 2011; 13:246-55. [PMID: 21040622 DOI: 10.1179/147683010x12611460764723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The appearance, the odor, and the flavor of foods, all send messages to the encephalic area of the brain. The hypothalamus, in particular, plays a key role in the mechanisms that control the feeding behavior. These signals modulate the expression and the action of anorexigenic or orexigenic substances that influence feeding behavior. The serotonergic system of neurotransmission consists of neurons that produce and liberate serotonin as well as the serotonin-specific receptor. It has been proven that some serotonergic drugs are effective in modulating the mechanisms of control of feeding behavior. Obesity and its associated illnesses have become significant public health problems. Some drugs that manipulate the serotonergic systems have been demonstrated to be effective interventions in the treatment of obesity. The complex interplay between serotonin and its receptors, and the resultant effects on feeding behavior have become of great interest in the scientific community.
Collapse
Affiliation(s)
- Carolina Peixoto Magalhães
- Centro Acadêmico de Vitoria/Universidade Federal de Pernambuco, Rua do Alto do Reservatório, S/N - Bela Vista - CEP 55608-680, Vitória de Santo Antão, PE, Brasil.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rajkumar R, Mahesh R. Assessing the neuronal serotonergic target-based antidepressant stratagem: impact of in vivo interaction studies and knockout models. Curr Neuropharmacol 2010; 6:215-34. [PMID: 19506722 PMCID: PMC2687932 DOI: 10.2174/157015908785777256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 06/05/2008] [Accepted: 06/12/2008] [Indexed: 12/26/2022] Open
Abstract
Depression remains a challenge in the field of affective neuroscience, despite a steady research progress. Six out of nine basic antidepressant mechanisms rely on serotonin neurotransmitter system. Preclinical studies have demonstrated the significance of serotonin receptors (5-HT1-3,6,7), its signal transduction pathways and classical down stream targets (including neurotrophins, neurokinins, other peptides and their receptors) in antidepressant drug action. Serotonergic control of depression embraces the recent molecular requirements such as influence on proliferation, neurogenesis, plasticity, synaptic (re)modeling and transmission in the central nervous system. The present progress report analyses the credibility of each protein as therapeutically relevant target of depression. In vivo interaction studies and knockout models which identified these targets are foreseen to unearth new ligands and help them transform to drug candidates. The importance of the antidepressant assay selection at the preclinical level using salient animal models/assay systems is discussed. Such test batteries would definitely provide antidepressants with faster onset, efficacy in resistant (and co-morbid) types and with least adverse effects. Apart from the selective ligands, only those molecules which bring an overall harmony, by virtue of their affinities to various receptor subtypes, could qualify as effective antidepressants. Synchronised modulation of various serotonergic sub-pathways is the basis for a unique and balanced antidepressant profile, as that of fluoxetine (most exploited antidepressant) and such a profile may be considered as a template for the upcoming antidepressants. In conclusion, 5-HT based multi-targeted antidepressant drug discovery supported by in vivo interaction studies and knockout models is advocated as a strategy to provide classic molecules for clinical trials.
Collapse
Affiliation(s)
- R Rajkumar
- Pharmacy Group, FD-III, Vidya Vihar, Birla Institute of Technology & Science, Pilani, Rajasthan-333031, India.
| | | |
Collapse
|
38
|
Carrillo M, Ricci LA, Schwartzer JJ, Melloni RH. Immunohistochemical characterization of 5-HT3A receptors in the Syrian hamster forebrain. Brain Res 2010; 1329:67-81. [DOI: 10.1016/j.brainres.2010.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 12/24/2022]
|
39
|
Rajkumar R, Mahesh R. The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol 2010; 24:455-69. [PMID: 20123937 DOI: 10.1177/0269881109348161] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The serotonergic mechanisms have been successfully utilized by the majority of antidepressant drug discovery programmes, while the search for newer targets remains persistent. The present review focused on the serotonin type-3 receptor, the only ion channel subtype in the serotonin family. Behavioural, neurochemical, electrophysiological and molecular analyses, including the results from our laboratory, provided substantial evidence that rationalizes the correlation between serotonin type-3 receptor modulation and rodent depressive-like behaviour. Nevertheless, the reports on polymorphism of serotonin type-3 receptor genes and data from clinical studies (on serotonin type-3 receptor antagonists) were insufficient to corroborate the involvement of this receptor in the neurobiology of depression. The preclinical and clinical studies that have contradicted the antidepressant-like effects of serotonin type-3 receptor antagonists and the reasons underlying such disagreement were discussed. Finally, this critical review commended the serotonin type-3 receptor as a candidate neuronal antidepressant drug target.
Collapse
|
40
|
Silveira JWS, Dias QM, Del Bel EA, Prado WA. Serotonin receptors are involved in the spinal mediation of descending facilitation of surgical incision-induced increase of Fos-like immunoreactivity in rats. Mol Pain 2010; 6:17. [PMID: 20331882 PMCID: PMC2860347 DOI: 10.1186/1744-8069-6-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/23/2010] [Indexed: 01/27/2023] Open
Abstract
Background Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide), 5-HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.
Collapse
Affiliation(s)
- João Walter S Silveira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | |
Collapse
|
41
|
Monti JM. The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med Rev 2010; 14:307-17. [PMID: 20153669 DOI: 10.1016/j.smrv.2009.11.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/15/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
Abstract
Serotonergic (5-HT) cells in the rat dorsal raphe nucleus (DRN) appear in topographically organized groups. Based on cellular morphology, expression of other neurotransmitters, afferent and efferent connections and functional properties, 5-HT neurons of the DRN have been grouped into six cell clusters. The subdivisions comprise the rostral, ventral, dorsal, lateral, caudal and interfascicular parts of the DRN. In addition to 5-HT cells, neurons containing γ-aminobutyric acid (GABA), glutamate, dopamine, nitric oxide and the neuropeptides corticotropin-releasing factor, substance P, galanin, cholecystokinin, neurotensin, somatostatin, vasoactive intestinal peptide, neuropeptide Y, thyrotropin-releasing hormone, growth hormone, leu-enkephalin, met-enkephalin and gastrin have been characterized in the DRN. Moreover, numerous brain areas have neurons that project to the DRN and express monoamines (norepinephrine, histamine), amino acids (GABA, glutamate), acetylcholine or neuropeptides (orexin, melanin-concentrating hormone, corticotropin-releasing factor and substance P) that directly or indirectly, through local circuits, regulate the activity of 5-HT cells. The 5-HT cells predominate along the midline of the rostral, dorsal and ventral subdivisions of the DRN and outnumber the non-5-HT cells occurring in the raphe nucleus. The GABAergic and glutamatergic neurons are clustered mainly in the lateral and dorsal subdivisions of the DRN, respectively. The 5-HT(1A) receptor is located on the soma and the dendrites of 5-HT neurons and at postsynaptic sites (outside the DRN). It is expressed, in addition, by non-5-HT cells of the DRN. The 5-HT(1B) receptor is located at presynaptic and postsynaptic sites (outside the boundaries of the DRN). It has been described also in the ventromedial DRN where it is expressed by non-5-HT cells. The 5-HT(2A) and 5-HT(2C) receptors are located within postsynaptic structures. At the level of the DRN the 5-HT(2A) and 5-HT(2C) receptor-containing cells are predominantly GABAergic interneurons and projection neurons. Within the boundaries of the DRN the 5-HT(3) receptor is expressed by, among others, glutamatergic interneurons. 5-HT(7) receptors in the DRN are not localized to serotonergic neurons but, at least in part, to GABAergic cells and terminals. The complex structure of the DRN may have important implications for neural mechanisms underlying 5-HT modulation of wakefulness and REM sleep.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital, Montevideo, Uruguay.
| |
Collapse
|
42
|
Oreland S, Pickering C, Gökturk C, Oreland L, Arborelius L, Nylander I. Two repeated maternal separation procedures differentially affect brain 5-hydroxytryptamine transporter and receptors in young and adult male and female rats. Brain Res 2009; 1305 Suppl:S37-49. [PMID: 19728999 DOI: 10.1016/j.brainres.2009.08.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 12/29/2022]
Abstract
Early environment is a known determinant for individual differences in vulnerability for adult psychopathology, e.g., ethanol addiction. One underlying mechanism could be dysfunction in serotonergic neurotransmission. This study focused on the methodological considerations regarding an animal model for studying effects of early environment, maternal separation (MS), using two different paradigms. Age- and sex-specific effects on brain stem 5-hydroxytryptamine (5-HT) transporter and receptors were examined. Male and female rat pups were assigned to either litter-wise MS for 15 or 360 min (MS15l or MS360l) or individual MS for 15 or 360 min (MS15i or MS360i) daily during postnatal days 1-21. Normal animal facility reared rats were used as controls. Analyses were performed in young and adult rats. As compared to the other males, MS15l males had lower 5-HT(1A) and 5-HT(2C) receptor mRNA expression at both ages, lower 5-HT(2A) receptor mRNA when young and lower 5-HTT mRNA expression when adult. In contrast, adult MS15l females had higher 5-HT(2C) receptor mRNA expression than other female rats. The strong impact of MS15l on 5-HT-related genes was either transient or persistent depending on sex and fewer effects on gene expression were observed in females than in males. This study shows the importance of tactile contact for the consequences of short but not prolonged MS, as evidenced by major differences between MS15l and MS15i. The results suggest that MS15i is less suitable than MS15l to simulate a protective environment in studies of, for instance, ethanol addiction processes.
Collapse
Affiliation(s)
- Sadia Oreland
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Long-term administration of monoamine oxidase inhibitors alters the firing rate and pattern of dopamine neurons in the ventral tegmental area. Int J Neuropsychopharmacol 2009; 12:475-85. [PMID: 18700056 DOI: 10.1017/s1461145708009218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase inhibitors (MAOIs) exert their antidepressant action by increasing the function of the serotonin (5-HT), norepinephrine and dopamine (DA) systems. There is, however, limited electrophysiological data on the effects of MAOIs on DA neurons. The effects of 2-d and 21-d administration of three MAOIs were investigated (clorgyline, selective MAOI-A; deprenyl, selective MAOI-B; phenelzine, non-selective MAOI) on the firing activity of DA neurons in the ventral tegmental area using in-vivo electrophysiology in rats. Short-term clorgyline (1 mg/kg) and phenelzine (2.5 mg/kg) was devoid of effect on DA neurons, whereas prolonged administration significantly decreased their firing rate (by 30% and 20%, respectively), number of bursts (by 80% and 45%, respectively), and percentage of spikes occurring in bursts only in clorgyline-treated rats (70%). Deprenyl (0.25 mg/kg) was without effects. DA firing was restored in clorgyline-treated rats by inhibiting 5-HT synthesis using para-chlorophenylalanine (p-CPA; 300 mg/kg. d for three consecutive days). The 5-HT3 antagonist ondansetron (0.5 mg/kg) was devoid of effect in control rats, but completely reversed the alterations of DA neuronal activity in clorgyline-treated rats. An attenuation of DA neuronal activity was thus produced by prolonged blockade of MAOA activity. The absence of effect of MAOA inhibition after subacute administration suggested an indirect mechanism. This was confirmed by the observation that p-CPA antagonized the effects of clorgyline. Since ondansetron completely reversed the effects of clorgyline on DA neuronal activity, the effects of MAOA inhibition appeared to be mediated by 5-HT3 receptors.
Collapse
|
44
|
Fukushima T, Ohtsubo T, Tsuda M, Yanagawa Y, Hori Y. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. J Neurophysiol 2009; 102:1459-71. [PMID: 19369358 DOI: 10.1152/jn.91160.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Analgesic effects of serotonin (5-hydroxytryptamine [5-HT]) type 3 (5-HT3) receptors may involve the release of gamma-aminobutyric acid (GABA) in the spinal dorsal horn. However, the precise synaptic mechanisms for 5-HT3 receptor-mediated spinal analgesia are not clear. In this study, we investigated whether GABAergic neurons in the superficial dorsal horn (SDH) express functional 5-HT3 receptors and how these 5-HT3 receptors affect GABAergic inhibitory synaptic transmission in the SDH, by using slice preparations from adult glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice. Tight-seal whole cell recordings from GFP-positive and -negative neurons showed that 5-HT3 receptor-specific agonist 2-methyl-serotonin (2-Me-5-HT) induced inward currents in a substantial population of both GFP-positive and -negative neurons. Additionally, we confirmed expression of 5-HT3 receptors in both types of neurons by single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis. Further, GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs)-both those evoked by electrical stimulation and those occurring spontaneously in tetrodotoxin (i.e., miniature IPSCs [mIPSCs])-were recorded from GFP-negative neurons. 2-Me-5-HT increased the amplitude of the evoked IPSCs and the frequency of mIPSCs. The amplitude of mIPSCs was not affected by 2-Me-5-HT, suggesting that 5-HT augments GABAergic synaptic transmission via presynaptic mechanisms. The present observations indicate that 5-HT3 receptors are expressed on both somadendritic regions and presynaptic terminals of GABAergic neurons and regulate GABAA receptor-mediated inhibitory synaptic transmission in the SDH. Taken together, these results provide clues for the underlying mechanisms of the antinociceptive actions of 5-HT3 receptors in the spinal dorsal horn.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | |
Collapse
|
45
|
Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology 2009; 56:273-84. [PMID: 18761359 PMCID: PMC6485434 DOI: 10.1016/j.neuropharm.2008.08.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 12/15/2022]
Abstract
The 5-hydroxytryptamine type-3 (5-HT3) receptor is a cation-selective ion channel of the Cys-loop superfamily. 5-HT3 receptor activation in the central and peripheral nervous systems evokes neuronal excitation and neurotransmitter release. Here, we review the relationship between the structure and the function of the 5-HT3 receptor. 5-HT3A and 5-HT3B subunits are well established components of 5-HT3 receptors but additional HTR3C, HTR3D and HTR3E genes expand the potential for molecular diversity within the family. Studies upon the relationship between subunit structure and the ionic selectivity and single channel conductances of 5-HT3 receptors have identified a novel domain (the intracellular MA-stretch) that contributes to ion permeation and selectivity. Conventional and unnatural amino acid mutagenesis of the extracellular domain of the receptor has revealed residues, within the principle (A-C) and complementary (D-F) loops, which are crucial to ligand binding. An area requiring much further investigation is the subunit composition of 5-HT3 receptors that are endogenous to neurones, and their regional expression within the central nervous system. We conclude by describing recent studies that have identified numerous HTR3A and HTR3B gene polymorphisms that impact upon 5-HT3 receptor function, or expression, and consider their relevance to (patho)physiology.
Collapse
Affiliation(s)
- Nicholas M. Barnes
- Cellular and Molecular Neuropharmacology Research Group, Department of Pharmacology, Division of Neuroscience, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim G. Hales
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | - Sarah C.R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - John A. Peters
- Neurosciences Institute, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, The University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
46
|
Imanishi T, Matsushima K, Kawaguchi A, Asano H, Funakami Y, Wada T, Masuko T, Yoshida S, Ichida S. Characteristics for enhanced response of serotonin-evoked ion dynamics in differentiated NG108-15 cells. Neurochem Res 2008; 34:1011-9. [PMID: 19082885 DOI: 10.1007/s11064-008-9839-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 08/19/2008] [Indexed: 12/19/2022]
Abstract
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca(2+)]( i )) and in the sodium ion (Na(+)) current by serotonin (5-HT) were investigated in differentiated neuroblastoma x glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca(2+)]( i ) by 5-HT were as follows, (1) The 5-HT-induced Ca(2+) response was inhibited by 3 x 10(-9) M tropisetron (a 5-HT(3) receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca(2+) response was mainly inhibited by calciseptine (a L-type Ca(2+) blocker), but not by other types of Ca(2+) channel blockers or 10(-7) M TTX (a voltage-sensitive Na(+) channel blocker); (3) When the extracellular Na(+) was removed by exchange with choline chloride or N-methyl-D-glucamine, the 5-HT-induced Ca(2+) response was extremely inhibited. The results for the 5-HT-induced Na(+) current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na(+) current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED(50) value for 5-HT-induced Na(+) current in undifferentiated and differentiated cells was almost the same, about 4 x 10(-6) M each other; (3) The 5-HT-induced Na(+) current was completely blocked by 3 x 10(-9) M tropisetron, but not by other 5-HT receptor antagonists and 10(-7) M TTX. These results suggested that 5-HT-induced Ca(2+) response in differentiated NG cells was mainly due to L-type voltage-gated Ca(2+) channels allowing extracellular Na(+) to enter via 5-HT(3) receptors, but not through voltage-gated Na(+) channels.
Collapse
Affiliation(s)
- Takashi Imanishi
- Department of Pharmacy, Laboratory of Biological Chemistry, School of Pharmacy, Kinki University, Higashiosaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Monti JM, Jantos H. Activation of the serotonin 5-HT3 receptor in the dorsal raphe nucleus suppresses REM sleep in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:940-7. [PMID: 18295951 DOI: 10.1016/j.pnpbp.2007.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/19/2007] [Accepted: 12/26/2007] [Indexed: 11/24/2022]
Abstract
The effects of the selective 5-HT(3) receptor agonist and antagonist m-chlorophenylbiguanide (m-CPBG) and ondansetron, respectively, were studied in adult male Wistar rats implanted for chronic sleep recordings. Microinjection of m-CPBG (2.0 and 4.0 mM) into the dorsal raphe nucleus (DRN) decreased rapid-eye-movement sleep (REMS) and the number of REM periods during the first, second, and third 2-h recording period. On the other hand, direct infusion of ondansetron (0.5-1.0 mM) into the DRN induced no significant changes in sleep variables over the 6 h of recording. Pretreatment with ondansetron (0.5 mM) antagonized the m-CPBG (2.0 mM)-induced reduction of REMS and of the number of REM periods. The data are consistent with the hypothesis that the 5-HT(3) receptor is involved in the effect of DRN serotonergic neurons on brainstem structures that act to promote and induce REMS. It is suggested that the suppression of REMS after the microinjection of m-CPBG into the DRN is related, at least in part, to the stimulation of glutamatergic interneurons that express 5-HT(3) receptors. Activation of these receptors facilitates the release of glutamate, which, in turn, acts on postsynaptic N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors expressed by serotonergic neurons of the DRN and increases the release of 5-HT at postsynaptic sites.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Clinics Hospital, Montevideo 11300, Uruguay.
| | | |
Collapse
|
48
|
Eglen RM. Monthly Update: The (R) zacopride binding site:Central & Peripheral Nervous Systems. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.3.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol 2008; 19:29-40. [DOI: 10.1097/fbp.0b013e3282f3cfd4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Doucet E, Latrémolière A, Darmon M, Hamon M, Emerit MB. Immunolabelling of the 5-HT3B receptor subunit in the central and peripheral nervous systems in rodents. Eur J Neurosci 2007; 26:355-66. [PMID: 17650111 DOI: 10.1111/j.1460-9568.2007.05659.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 5-HT(3) receptor is a member of the superfamily of neurotransmitter-gated ion channels involved in fast synaptic signalling and in modulation of neurotransmitter release. As for many other channel receptors, the electrophysiological properties and the functions of the 5-HT(3) receptor are determined by subunit composition of the pentameric channel. Because in situ hybridization did not allow the detection of mRNA encoding the 5-HT(3B) subunit in the rodent central nervous system, or in nearly half of the neurons expressing the 5-HT(3A) subunit in peripheral ganglia, it has been suggested that subunit composition could define at least two 5-HT(3) receptor-expressing neuronal populations. In order to challenge this hypothesis, we have developed polyclonal antibodies directed against a portion of the second intracytoplasmic loop of the mouse 5-HT(3B) subunit. Immunohistochemical analysis in the mouse and the rat revealed that immunolabelling was most prominent in peripheral ganglia, particularly in trigeminal ganglia (TG). In rats, transection or ligature of the infraorbital nerve resulted in a pronounced accumulation of immunoreactive material at the proximal side of the lesioned nerve, and an up-regulation of both subunits in 5-HT(3) receptor-expressing TG neurons. Surprisingly, nearly 100% of neurons expressing 5-HT(3A) subunits were also labelled by anti-5-HT(3B) antibodies. We also detected 5-HT(3B) immunoreactivity in the rat hippocampal CA1 layer and in scattered cortical neurons, indicating that detection of 5-HT(3) subunit mRNA by in situ hybridization might not provide really complete mapping of heteromeric 5-HT(3A/B) vs. homomeric 5-HT(3A) receptors in the peripheral and central nervous systems in rodents.
Collapse
|