1
|
Lee J, Toujani C, Tang Y, Lee R, Cureño Hernandez KE, Guilliams BF, Pochan DJ, Ramírez-Hernández A, Herrera-Alonso M. Nonequilibrium Solution-Based Assemblies from Bottlebrush Block Copolymers for Drug Delivery. ACS NANO 2025. [PMID: 40340307 DOI: 10.1021/acsnano.5c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Kinetic aspects of the self-assembly process of block copolymers are of great interest, as they can direct assembly through specific pathways, yielding nonequilibrium states with complex and unprecedented nanostructures. Assembly kinetics of diblock bottlebrushes was shown to influence the material properties of their solid-state nanostructures, yet little is known regarding their solution-based structures. Herein, we target the nonequilibrium self-assembly of nanoparticles from a zwitterionic diblock bottlebrush consisting of poly(d,l-lactide) and poly(2-methacryloyloxyethyl phosphorylcholine) side-chains. Triggered by a large and rapid change in solvent quality, we examine the resulting nonequilibrium structures (nanoparticles) and their equilibrium analogues (micelles). Using a combination of microscopy and light scattering methods as well as molecular simulations, we gain a microscopic understanding of the experimentally observed differences between the two systems. Compared to micelles, nanoparticles were observed to have a considerably lower aggregation number (accurately predicted by micellar evolution kinetics) and more frustrated core-block packing, along with a lower surface density of hydrophilic chains. Both types of assemblies possessed excellent hemocompatibility and colloidal stability under physiological conditions, concentrated salt solutions, and elevated temperature cycling. Encapsulation of a biopharmaceutics classification system (BCS) class II drug showed superior drug loading capacities and efficiencies for nanoparticles that were not achievable by micelles. In essence, this research provides insight regarding the effects of assembly and stabilization kinetics of zwitterionic bottlebrushes, laying the groundwork for future optimization as a drug delivery platform.
Collapse
Affiliation(s)
- Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chiraz Toujani
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rahmi Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Karla E Cureño Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Ashbridge Z, Reek JNH. Transient Allosteric Regulation of Catalysis by Effector Switching in a Pt 2L 4 Cage. Angew Chem Int Ed Engl 2025; 64:e202500214. [PMID: 39840446 DOI: 10.1002/anie.202500214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors. The orthogonal diacid-catalyzed carbodiimide hydration cycle produces transiently diverse guests that influence the rate of the Pt-catalyzed cyclization reaction to different extents. Further complexity can be introduced to the system through displacing the transiently-formed, weakly bound anhydride guest with the stronger binding fumaronitrile, affecting the catalytic rate to a larger extent for the duration of the orthogonal reaction cycle. The modulation of a Pt-catalyzed cyclization reaction can thus be regulated transiently over the course of the reaction- either up- or down-regulating the turnover frequency (TOF)-via coupling with a temporally controllable orthogonal process. This study demonstrates that principles of allosteric enzymatic regulation can also be applied to simple artificial systems.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Cappelletti D, Lancia F, Basagni A, Đorđević L. ATP-Regulated Formation of Transient Peptide Amphiphiles Superstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410850. [PMID: 40007061 PMCID: PMC11962707 DOI: 10.1002/smll.202410850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Self-assembly of biotic systems serves as inspiration for the preparation of synthetic supramolecular assemblies to mimic the structural, temporal, and functional aspects of living systems. Despite peptide amphiphiles (PAs) being widely studied in the context of biomimetic and bioactive functional nanomaterials, very little is currently known about the reversible and spatiotemporal control of their hierarchical self-assemblies. Here, it is shown that PA-based supramolecular nanofibers can transiently form superstructures, through binding with oppositely charged adenosine triphosphate (ATP), leading to charge screening and stabilization of bundled nanofibers. Enzymatic hydrolysis of ATP to adenosine monophosphate and phosphates causes the disassembly of the superstructures and recovery of individual nanofibers. The lifetime of superstructures can be controlled by adjusting the concentration of either ATP or enzyme. The role that the formation of bundled PA nanofibers has on chemical reactivity and catalysis is also evaluated. It is observed that superstructuration is responsible for downregulation in the PA activity, which can then be recovered by gradual disassembly of the bundles. These results demonstrate the potential of reversible and controlled hierarchical self-assembly to modulate the reactivity and catalysis of peptide nanostructures.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | | | - Andrea Basagni
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Luka Đorđević
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| |
Collapse
|
4
|
Rath M, Srivastava S, Carmona E, Battumur S, Arumugam S, Albertus P, Woehl T. Transient colloidal crystals fueled by electrochemical reaction products. Nat Commun 2025; 16:2077. [PMID: 40021648 PMCID: PMC11871323 DOI: 10.1038/s41467-025-57333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2025] [Indexed: 03/03/2025] Open
Abstract
Conventional electric field directed colloidal assembly enables fabricating ordered structures but lacks temporal control over assembly state. Chemical reaction networks have been discovered that transiently assemble colloids; however, they have slow dynamics (hrs - days) and poor temporal tunability, utilize complex reagents, and produce kinetically trapped states. Here we demonstrate transient colloidal crystals that autonomously form, breakup, and reconstitute in response to an electrochemical reaction network driven by a time invariant electrical stimulus. Aqueous mixtures of micron sized colloids and para-benzoquinone (BQ) were subjected to superimposed oscillatory and steady electric potentials, i.e., multimode potentials, that induce electrokinetic flows around colloids and proton-coupled BQ redox reactions. Transient assembly states coincided with electrochemically generated pH spikes near the cathode. We demonstrate wide tunability of transient assembly state lifetimes over two orders of magnitude by modifying the electric potential and electrode separation. An electrochemical transport model showed that interaction of advancing acidic and alkaline pH fronts from anodic BQ oxidation and cathodic BQ reduction caused pH transients. We present theoretical and experimental evidence that indicates transient colloidal crystals were mediated by competition between opposing colloidal scale electrohydrodynamic and electroosmotic flows, the latter of which is pH dependent.
Collapse
Affiliation(s)
- Medha Rath
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Satyam Srivastava
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Eric Carmona
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Sarangua Battumur
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Shakti Arumugam
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Paul Albertus
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA.
| | - Taylor Woehl
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA.
| |
Collapse
|
5
|
Holtmannspötter AL, Machatzke C, Begemann C, Salibi E, Donau C, Späth F, Boekhoven J, Mutschler H. Regulating Nucleic Acid Catalysis Using Active Droplets. Angew Chem Int Ed Engl 2024; 63:e202412534. [PMID: 39119638 DOI: 10.1002/anie.202412534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cells use transient membraneless organelles to regulate biological reaction networks. For example, stress granules selectively store mRNA to downregulate protein expression in response to heat or oxidative stress. Models mimicking this active behavior should be established to better understand in vivo regulation involving compartmentalization. Here we use active, complex coacervate droplets as a model for membraneless organelles to spatiotemporally control the activity of a catalytic DNA (DNAzyme). Upon partitioning into these peptide-RNA droplets, the DNAzyme unfolds and loses its ability to catalyze the cleavage of a nucleic acid strand. We can transiently pause the DNAzyme activity upon inducing droplet formation with fuel. After fuel consumption, the DNAzyme activity autonomously restarts. We envision this system could be used to up and downregulate multiple reactions in a network, helping understand the complexity of a cell's pathways. By creating a network where the DNAzyme could reciprocally regulate the droplet properties, we would have a powerful tool for engineering synthetic cells.
Collapse
Affiliation(s)
- Anna-Lena Holtmannspötter
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Corbin Machatzke
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christian Begemann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Carsten Donau
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Späth
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
6
|
Al Shehimy S, Le HD, Amano S, Di Noja S, Monari L, Ragazzon G. Progressive Endergonic Synthesis of Diels-Alder Adducts Driven by Chemical Energy. Angew Chem Int Ed Engl 2024; 63:e202411554. [PMID: 39017608 DOI: 10.1002/anie.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
The overwhelming majority of artificial chemical reaction networks respond to stimuli by relaxing towards an equilibrium state. The opposite response-moving away from equilibrium-can afford the endergonic synthesis of molecules, of which only rare examples have been reported. Here, we report six examples of Diels-Alder adducts formed in an endergonic process and use this strategy to realize their stepwise accumulation. Indeed, systems respond to repeated occurrences of the same stimulus by increasing the amount of adduct formed, with the final network distribution depending on the number of stimuli received. Our findings indicate how endergonic processes can contribute to the transition from responsive to adaptive systems.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Hai-Dang Le
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuntaro Amano
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Simone Di Noja
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Luca Monari
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
7
|
Saha NK, Salvia WS, Konkolewicz D, Hartley CS. Transient Covalent Polymers through Carbodiimide-Driven Assembly. Angew Chem Int Ed Engl 2024; 63:e202404933. [PMID: 38772695 DOI: 10.1002/anie.202404933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Biochemical systems make use of out-of-equilibrium polymers generated under kinetic control. Inspired by these systems, many abiotic supramolecular polymers driven by chemical fuel reactions have been reported. Conversely, polymers based on transient covalent bonds have received little attention, even though they have the potential to complement supramolecular systems by generating transient structures based on stronger bonds and by offering a straightforward tuning of reaction kinetics. In this study, we show that simple aqueous dicarboxylic acids give poly(anhydrides) when treated with the carbodiimide EDC. Transient covalent polymers with molecular weights exceeding 15,000 are generated which then decompose over the course of hours to weeks. Disassembly kinetics can be controlled using simple substituent effects in the monomer design. The impact of solvent polarity, carbodiimide concentration, temperature, pyridine concentration, and monomer concentration on polymer properties and lifetimes has been investigated. The results reveal substantial control over polymer assembly and disassembly kinetics, highlighting the potential for fine-tuned kinetic control in nonequilibrium polymerization systems.
Collapse
Affiliation(s)
- Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - William S Salvia
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| |
Collapse
|
8
|
Fielden SDP. Kinetically Controlled and Nonequilibrium Assembly of Block Copolymers in Solution. J Am Chem Soc 2024; 146:18781-18796. [PMID: 38967256 PMCID: PMC11258791 DOI: 10.1021/jacs.4c03314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Covalent polymers are versatile macromolecules that have found widespread use in society. Contemporary methods of polymerization have made it possible to construct sequence polymers, including block copolymers, with high precision. Such copolymers assemble in solution when the blocks have differing solubilities. This produces nano- and microparticles of various shapes and sizes. While it is straightforward to draw an analogy between such amphiphilic block copolymers and phospholipids, these two classes of molecules show quite different assembly characteristics. In particular, block copolymers often assemble under kinetic control, thus producing nonequilibrium structures. This leads to a rich variety of behaviors being observed in block copolymer assembly, such as pathway dependence (e.g., thermal history), nonergodicity and responsiveness. The dynamics of polymer assemblies can be readily controlled using changes in environmental conditions and/or integrating functional groups situated on polymers with external chemical reactions. This perspective highlights that kinetic control is both pervasive and a useful attribute in the mechanics of block copolymer assembly. Recent examples are highlighted in order to show that toggling between static and dynamic behavior can be used to generate, manipulate and dismantle nonequilibrium states. New methods to control the kinetics of block copolymer assembly will provide endless unanticipated applications in materials science, biomimicry and medicine.
Collapse
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
9
|
Islam M, Baroi MK, Das BK, Kumari A, Das K, Ahmed S. Chemically fueled dynamic switching between assembly-encoded emissions. MATERIALS HORIZONS 2024; 11:3104-3114. [PMID: 38687299 DOI: 10.1039/d4mh00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-assembly provides access to non-covalently synthesized supramolecular materials with distinct properties from a single building block. However, dynamic switching between functional states still remains challenging, but holds enormous potential in material chemistry to design smart materials. Herein, we demonstrate a chemical fuel-mediated strategy to dynamically switch between two distinctly emissive aggregates, originating from the self-assembly of a naphthalimide-appended peptide building block. A molecularly dissolved building block shows very weak blue emission, whereas, in the assembled state (Agg-1), it shows cyan emission through π stacking-mediated excimer emission. The addition of a chemical fuel, ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), converts the terminal aspartic acid present in the building block to an intra-molecularly cyclized anhydride in situ forming a second aggregated state, Agg-2, by changing the molecular packing, thereby transforming the emission to strong blue. Interestingly, the anhydride gets hydrolyzed gradually to reform Agg-1 and the initial cyan emission is restored. The kinetic stability of the strong blue emissive aggregate, Agg-2, can be regulated by the added concentration of the chemical fuel. Moreover, we expand the scope of this system within an agarose gel matrix, which allows us to gain spatiotemporal control over the properties, thereby producing a self-erasable writing system where the chemical fuel acts as the ink.
Collapse
Affiliation(s)
- Manirul Islam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aanchal Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Krishnendu Das
- Department of Molecules and Materials & MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| |
Collapse
|
10
|
Williams ER, Ruff CX, Stefik M. Unimer suppression enables supersaturated homopolymer swollen micelles with long-term stability after glassy entrapment. SOFT MATTER 2024; 20:2288-2300. [PMID: 38358107 DOI: 10.1039/d3sm01754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Micelle sizes are critical for a range of applications where the simple ability to adjust and lock in specific stable sizes has remained largely elusive. While micelle swelling agents are well-known, their dynamic re-equilibration in solution implies limited stability. Here, a non-equilibrium processing sequence is studied where supersaturated homopolymer swelling is combined with glassy-core ("persistent") micelles. This path-dependent process was found to sensitively depend on unimer concentration as revealed by DLS, SAXS, and TEM analysis. Here, lower-selectivity solvent combinations led to the formation of unimer-homopolymer aggregates and eventual precipitation, reminiscent of anomalous micellization. In contrast, higher-selectivity solvents enabled supersaturated homopolymer loadings favored by rapid homopolymer insertion. The demonstrated ∼40-130 nm core-size tuning exceeded prior equilibrium demonstrations and subsequent core-vitrification enabled size persistence beyond 6 months. Lastly, the linear change in micelle diameter with homopolymer addition was found to correlate with a plateau in the interfacial area per copolymer chain.
Collapse
Affiliation(s)
- Eric R Williams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208.
| | - Christian X Ruff
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208.
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208.
| |
Collapse
|
11
|
Chen X, Soria-Carrera H, Zozulia O, Boekhoven J. Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle. Chem Sci 2023; 14:12653-12660. [PMID: 38020366 PMCID: PMC10646924 DOI: 10.1039/d3sc04281b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation. However, the cycle suffers from side reactions, especially the formation of N-acylurea. In catalytic reaction cycles, side reactions are disastrous as they decrease the fuel's efficiency and, more importantly, destroy the molecular machinery or assembling molecules. Therefore, this work tested how to suppress N-acylurea by screening precursor concentration, its structure, carbodiimide structure, additives, temperature, and pH. It turned out that the combination of low temperature, low pH, and 10% pyridine as a fraction of the fuel could significantly suppress the N-acylurea side product and keep the reaction cycle highly effective to regulate successful assembly. We anticipate that our work will provide guidelines for using carbodiimide-fueled reaction cycles to regulate molecular function and how to choose optimal conditions.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Héctor Soria-Carrera
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Oleksii Zozulia
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
12
|
Späth F, Maier AS, Stasi M, Bergmann AM, Halama K, Wenisch M, Rieger B, Boekhoven J. The Role of Chemically Innocent Polyanions in Active, Chemically Fueled Complex Coacervate Droplets. Angew Chem Int Ed Engl 2023; 62:e202309318. [PMID: 37549224 DOI: 10.1002/anie.202309318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.
Collapse
Affiliation(s)
- Fabian Späth
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Anton S Maier
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
13
|
Häfner G, Müller M. Reaction-driven assembly: controlling changes in membrane topology by reaction cycles. SOFT MATTER 2023; 19:7281-7292. [PMID: 37605887 DOI: 10.1039/d3sm00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chemical reaction cycles are prototypical examples how to drive systems out of equilibrium and introduce novel, life-like properties into soft-matter systems. We report simulations of amphiphilic molecules in aqueous solution. The molecule's head group is permanently hydrophilic, whereas the reaction cycle switches the molecule's tail from hydrophilic (precursor) to hydrophobic (amphiphile) and vice versa. The reaction cycle leads to an arrest in coalescence and results in uniform vesicle sizes that can be controlled by the reaction rate. Using a continuum description and particle-based simulation, we study the scaling of the vesicle size with the reaction rate. The chemically active vesicles are inflated by precursor, imparting tension onto the membrane and, for specific parameters, stabilize pores.
Collapse
Affiliation(s)
- Gregor Häfner
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Chen X, Kriebisch BAK, Bergmann AM, Boekhoven J. Design rules for reciprocal coupling in chemically fueled assembly. Chem Sci 2023; 14:10176-10183. [PMID: 37772095 PMCID: PMC10530897 DOI: 10.1039/d3sc02062b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Biology regulates the function and assembly of proteins through non-equilibrium reaction cycles. Reciprocally, the assembly of proteins can influence the reaction rates of these cycles. Such reciprocal coupling between assembly and reaction cycle is a prerequisite for behavior like dynamic instabilities, treadmilling, pattern formation, and oscillations between morphologies. While assemblies regulated by chemical reaction cycles gained traction, the concept of reciprocal coupling is under-explored. In this work, we provide two molecular design strategies to tweak the degree of reciprocal coupling between the assembly and reaction cycle. The strategies involve spacing the chemically active site away from the assembly or burying it into the assembly. We envision that design strategies facilitate the creation of reciprocally coupled and, by extension, dynamic supramolecular materials in the future.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Brigitte A K Kriebisch
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
15
|
Spitzbarth B, Eelkema R. Chemical reaction networks based on conjugate additions on β'-substituted Michael acceptors. Chem Commun (Camb) 2023; 59:11174-11187. [PMID: 37529876 PMCID: PMC10508045 DOI: 10.1039/d3cc02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Over the last few decades, the study of more complex, chemical systems closer to those found in nature, and the interactions within those systems, has grown immensely. Despite great efforts, the need for new, versatile, and robust chemistry to apply in CRNs remains. In this Feature Article, we give a brief overview over previous developments in the field of systems chemistry and how β'-substituted Michael acceptors (MAs) can be a great addition to the systems chemist's toolbox. We illustrate their versatility by showcasing a range of examples of applying β'-substituted MAs in CRNs, both as chemical signals and as substrates, to open up the path to many applications ranging from responsive materials, to pathway control in CRNs, drug delivery, analyte detection, and beyond.
Collapse
Affiliation(s)
- Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
16
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
17
|
Chen X, Würbser MA, Boekhoven J. Chemically Fueled Supramolecular Materials. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:416-426. [PMID: 37256081 PMCID: PMC10226104 DOI: 10.1021/accountsmr.2c00244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Indexed: 06/01/2023]
Abstract
In biology, the function of many molecules is regulated through nonequilibrium chemical reaction cycles. The prototypical example is the phosphorylation of an amino acid in an enzyme which induces a functional change, e.g., it folds or unfolds, assembles or disassembles, or binds a substrate. Such phosphorylation does not occur spontaneously but requires a phosphorylating agent with high chemical potential (for example, adenosine triphosphate (ATP)) to be converted into a molecule with lower chemical potential (adenosine diphosphate (ADP)). When this energy is used to regulate an assembly, we speak of chemically fueled assemblies; i.e., the molecule with high potential, the fuel, is used to regulate a self-assembly process. For example, the binding of guanosine triphosphate (GTP) to tubulin induces self-assembly. The bound GTP is hydrolyzed to guanosine diphosphate (GDP) upon assembly, which induces tubulin disassembly. The result is a dynamic assembly endowed with unique characteristics, such as time-dependent behavior and the ability to self-heal. These intriguing, unique properties have inspired supramolecular chemists to create similar chemically fueled molecular assemblies from the bottom up. While examples have been designed, they remain scarce partly because chemically fueled reaction cycles are rare and often complex. Thus, we recently developed a carbodiimide-driven reaction cycle that is versatile and easy to use, quantitatively understood, and does not suffer from side reactions. In the reaction cycle, a carboxylate precursor reacts with a carbodiimide to form an activated species like an anhydride or ester. The activated state reacts with water and thereby reverts to its precursor state; i.e., the activated state is deactivated. Effectively, the precursor catalyzes carbodiimides' conversion into waste and forms a transient activated state. We designed building blocks to regulate a range of assemblies and supramolecular materials at the expense of carbodiimide fuel. The simplicity and versatility of the reaction cycles have democratized and popularized the field of chemically fueled assemblies. In this Account, we describe what we have "learned" on our way. We introduce the field exemplified by biological nonequilibrium self-assembly. We describe the design of the carbodiimide-driven reaction cycle. Using examples from our group and others, we offer design rules for the building block's structure and strategies to create the desired morphology or supramolecular materials. The discussed morphologies include fibers, colloids, crystals, and oil- and coacervate-based droplets. We then demonstrate how these assemblies form supramolecular materials with unique material properties like the ability to self-heal. Besides, we discuss the concept of reciprocal coupling in which the assembly exerts feedback on its reaction cycle and we also offer examples of such feedback mechanisms. Finally, we close the Account with a discussion and an outlook on this field. This Account aims to provide our fundamental understanding and facilitate further progress toward conceptually new supramolecular materials.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Michaela A. Würbser
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Job Boekhoven
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| |
Collapse
|
18
|
Chen X, Stasi M, Rodon-Fores J, Großmann PF, Bergmann AM, Dai K, Tena-Solsona M, Rieger B, Boekhoven J. A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5(4 H)-Oxazolones. J Am Chem Soc 2023; 145:6880-6887. [PMID: 36931284 PMCID: PMC10064336 DOI: 10.1021/jacs.3c00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jennifer Rodon-Fores
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Paula F Großmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kun Dai
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Marta Tena-Solsona
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Bernhard Rieger
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
19
|
Fielden SDP, Derry MJ, Miller A, Topham PD, O’Reilly RK. Triggered Polymersome Fusion. J Am Chem Soc 2023; 145:5824-5833. [PMID: 36877655 PMCID: PMC10021019 DOI: 10.1021/jacs.2c13049] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The contents of biological cells are retained within compartments formed of phospholipid membranes. The movement of material within and between cells is often mediated by the fusion of phospholipid membranes, which allows mixing of contents or excretion of material into the surrounding environment. Biological membrane fusion is a highly regulated process that is catalyzed by proteins and often triggered by cellular signaling. In contrast, the controlled fusion of polymer-based membranes is largely unexplored, despite the potential application of this process in nanomedicine, smart materials, and reagent trafficking. Here, we demonstrate triggered polymersome fusion. Out-of-equilibrium polymersomes were formed by ring-opening metathesis polymerization-induced self-assembly and persist until a specific chemical signal (pH change) triggers their fusion. Characterization of polymersomes was performed by a variety of techniques, including dynamic light scattering, dry-state/cryogenic-transmission electron microscopy, and small-angle X-ray scattering (SAXS). The fusion process was followed by time-resolved SAXS analysis. Developing elementary methods of communication between polymersomes, such as fusion, will prove essential for emulating life-like behaviors in synthetic nanotechnology.
Collapse
Affiliation(s)
| | - Matthew J. Derry
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Alisha
J. Miller
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Paul D. Topham
- Aston
Advanced Materials Research Centre, Aston
University, Birmingham B4 7ET, UK
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Del Giudice D, Di Stefano S. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids. Acc Chem Res 2023; 56:889-899. [PMID: 36916734 PMCID: PMC10077594 DOI: 10.1021/acs.accounts.3c00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (1a), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (1acb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid 1a and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Nikfarjam S, Gibbons R, Burni F, Raghavan SR, Anisimov MA, Woehl TJ. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023; 24:1131-1140. [PMID: 36795055 DOI: 10.1021/acs.biomac.2c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties. Fast oxidation of cysteine groups on bovine serum albumin by hydrogen peroxide, the chemical fuel, formed transient hydrogels with disulfide bond cross-links that degraded over hours by a slow reductive back reaction. Interestingly, despite increased cross-linking, the hydrogel lifetime decreased as a function of increasing denaturant concentration. Experiments showed that the solvent-accessible cysteine concentration increased with increasing denaturant concentration due to unfolding of secondary structures. The increased cysteine concentration consumed more fuel, which led to less direction oxidation of the reducing agent and affected a shorter hydrogel lifetime. Increased hydrogel stiffness, disulfide cross-linking density, and decreased oxidation of redox-sensitive fluorescent probes at a high denaturant concentration provided evidence supporting the unveiling of additional cysteine cross-linking sites and more rapid consumption of hydrogen peroxide at higher denaturant concentrations. Taken together, the results indicate that the protein secondary structure mediated the transient hydrogel lifetime and mechanical properties by mediating the redox reactions, a feature unique to biomacromolecules that exhibit a higher order structure. While prior works have focused on the effects of the fuel concentration on dissipative assembly of non-biological molecules, this work demonstrates that the protein structure, even in nearly fully denatured proteins, can exert similar control over reaction kinetics, lifetime, and resulting mechanical properties of transient hydrogels.
Collapse
Affiliation(s)
- Shakiba Nikfarjam
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Rebecca Gibbons
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Faraz Burni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
22
|
Su B, Chi T, Ye Z, Xiang Y, Dong P, Liu D, Addonizio CJ, Webber MJ. Transient and Dissipative Host-Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel. Angew Chem Int Ed Engl 2023; 62:e202216537. [PMID: 36598411 DOI: 10.1002/anie.202216537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The transient self-assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out-of-equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host-guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]-guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.
Collapse
Affiliation(s)
- Bo Su
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Teng Chi
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Ping Dong
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Christopher J Addonizio
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, 46556, Notre Dame, IN, USA
| |
Collapse
|
23
|
Kruse J, Sanromán‐Iglesias M, Marauri A, Rivilla I, Grzelczak M. Coupling Reversible Clustering of DNA‐Coated Gold Nanoparticles with Chemothermal Cycloaddition Reaction. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joscha Kruse
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- CIC nanoGUNE BRTA Tolosa Hiribidea 76 20018 Donostia-Sebastián Spain
| | - Maria Sanromán‐Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU Paseo Manuel de Lardizabal 5 20018 Donostia San-Sebastián Spain
| | - Aimar Marauri
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) Lardizabal Pasealekua 3 20018 Donostia-San Sebastián Spain
| | - Ivan Rivilla
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Centro de Física de Materiales CSIC-UPV/EHU Paseo Manuel de Lardizabal 5 20018 Donostia San-Sebastián Spain
| |
Collapse
|
24
|
Rodon-Fores J, Würbser MA, Kretschmer M, Rieß B, Bergmann AM, Lieleg O, Boekhoven J. A chemically fueled supramolecular glue for self-healing gels. Chem Sci 2022; 13:11411-11421. [PMID: 36320578 PMCID: PMC9533421 DOI: 10.1039/d2sc03691f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Chemically fueled supramolecular materials offer unique properties that include spatial and temporal control and even the ability to self-heal. Indeed, a few studies have demonstrated the ability to self-heal, however, the underlying mechanisms remain unclear. Here, we designed a peptide that forms a fibrillar network upon chemical fueling. We were surprised that the hydrogel could self-heal despite the lack of dynamics in the fiber assembly and disassembly. We explain this behavior by a mechanism that involves the chemically fueled peptide molecules that cannot self-assemble due to the lack of nucleation sites. When the fibers are perturbed, new nucleation sites form that help the assembly resulting in the healing of the damaged network. Furthermore, we generalized the behavior for other peptides. We refer to this non-assembling, chemically-fueled peptide as a molecular glue. In future work, we aim to explore whether this self-healing mechanism applies to more complex structures, narrowing the gap between biological and synthetic self-assemblies.
Collapse
Affiliation(s)
- Jennifer Rodon-Fores
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Michaela A Würbser
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Martin Kretschmer
- TUM School of Engineering and Design, Department for Materials Engineering, Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
- Center for Protein Assemblies (CPA) & Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich Ernst-Otto-Fischer-Str. 8 85748 Garching Germany
| | - Benedikt Rieß
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design, Department for Materials Engineering, Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
- Center for Protein Assemblies (CPA) & Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich Ernst-Otto-Fischer-Str. 8 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
25
|
Xu H, Bai S, Gu G, Gao Y, Sun X, Guo X, Xuan F, Wang Y. Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43825-43832. [PMID: 36103624 DOI: 10.1021/acsami.2c13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The movements of soft living tissues, such as muscle, have sparked a strong interest in the design of hydrogel actuators; however, so far, typical manmade examples still lag behind their biological counterparts, which usually function under nonequilibrium conditions through the consumption of high-energy biomolecules and show highly autonomous behaviors. Here, we report on self-resettable hydrogel actuators that are powered by a chemical fuel and can spontaneously return to their original states over time once the fuels are depleted. Self-resettable actuation originates from a chemical fuel-mediated transient change in the hydrophilicity of the hydrogel networks. The actuation extent and duration can be programmed by the fuel levels, and the self-resettable actuation process is highly recyclable through refueling. Furthermore, various proof-of-concept autonomous soft robots are created, resembling the movements of soft-bodied creatures in nature. This work may serve as a starting point for the development of lifelike soft robots with autonomous behaviors.
Collapse
Affiliation(s)
- Hao Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Shengyu Bai
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Guanyao Gu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yuliang Gao
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xun Sun
- Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009, P. R. China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yiming Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| |
Collapse
|
26
|
Englert A, Vogel JF, Bergner T, Loske J, von Delius M. A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design. J Am Chem Soc 2022; 144:15266-15274. [PMID: 35953065 PMCID: PMC9413217 DOI: 10.1021/jacs.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 12/02/2022]
Abstract
A growing number of out-of-equilibrium systems have been created and investigated in chemical laboratories over the past decade. One way to achieve this is to create a reaction cycle, in which the forward reaction is driven by a chemical fuel and the backward reaction follows a different pathway. Such dissipative reaction networks are still relatively rare, however, and most non-enzymatic examples are based on the carbodiimide-driven generation of carboxylic acid anhydrides. In this work, we describe a dissipative reaction network that comprises the chemically fueled formation of phosphoramidates from natural ribonucleotides (e.g., GMP or AMP) and phosphoramidate hydrolysis as a mild backward reaction. Because the individual reactions are subject to a multitude of interconnected parameters, the software-assisted tool "Design of Experiments" (DoE) was a great asset for optimizing and understanding the network. One notable insight was the stark effect of the nucleophilic catalyst 1-ethylimidazole (EtIm) on the hydrolysis rate, which is reminiscent of the action of the histidine group in phosphoramidase enzymes (e.g., HINT1). We were also able to use the reaction cycle to generate transient self-assemblies, which were characterized by dynamic light scattering (DLS), confocal microscopy (CLSM), and cryogenic transmission electron microscopy (cryo-TEM). Because these compartments are based on prebiotically plausible building blocks, our findings may have relevance for origin-of-life scenarios.
Collapse
Affiliation(s)
- Andreas Englert
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julian F. Vogel
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tim Bergner
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jessica Loske
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
27
|
Bhattacharya D, Kleeblatt DC, Statt A, Reinhart WF. Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks. SOFT MATTER 2022; 18:5037-5051. [PMID: 35748651 DOI: 10.1039/d2sm00452f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
Collapse
Affiliation(s)
- Debjyoti Bhattacharya
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Devon C Kleeblatt
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Wesley F Reinhart
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
28
|
Li X, Wang G, Zhang Q, Liu Y, Sun T, Liu S. Dissipative self-assembly of a dual-responsive block copolymer driven by a chemical oscillator. J Colloid Interface Sci 2022; 615:732-739. [DOI: 10.1016/j.jcis.2022.01.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022]
|
29
|
Del Giudice D, Frateloreto F, Sappino C, Di Stefano S. Chemical Tools for the Temporal Control of Water Solution pH and Applications in Dissipative Systems. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniele Del Giudice
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Federico Frateloreto
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Carla Sappino
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry ITALY
| | - Stefano Di Stefano
- University of Rome La Sapienza: Universita degli Studi di Roma La Sapienza Chemistry Department Piazzale Aldo Moro 5 00185 Rome ITALY
| |
Collapse
|
30
|
Del Giudice D, Valentini M, Melchiorre G, Spatola E, Di Stefano S. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry 2022; 28:e202200685. [DOI: 10.1002/chem.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Gabriele Melchiorre
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| |
Collapse
|
31
|
Sharma C, Walther A. Self-Regulating Colloidal Co-Assemblies That Accelerate Their Own Destruction via Chemo-Structural Feedback. Angew Chem Int Ed Engl 2022; 61:e202201573. [PMID: 35235231 PMCID: PMC9311650 DOI: 10.1002/anie.202201573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Biological self‐assemblies self‐ and cross‐regulate each other via chemical reaction networks (CRNs) and feedback. Although artificial transient self‐assemblies have been realized via activation/deactivation CRNs, the transient structures themselves do mostly not engage in the CRN. We introduce a rational design approach for chemo‐structural feedback, and present a transient colloidal co‐assembly system, where the formed co‐assemblies accelerate their destruction autonomously. We achieve this by immobilizing enzymes of a deactivating acid‐producing enzymatic cascade on pH‐switchable microgels that can form co‐assemblies at high pH. Since the enzyme partners are immobilized on individual microgels, the co‐assembled state brings them close enough for enhanced acid generation. The amplified deactivator production (acid) leads to an almost two‐fold reduction in the lifetime of the transiently formed pH‐state. Our study thus introduces versatile mechanisms for chemo‐structural feedback.
Collapse
Affiliation(s)
- Charu Sharma
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, 55128, Mainz, Germany.,Cluster of Excellence livMats @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79098, Freiburg, Germany
| |
Collapse
|
32
|
Bi-directional feedback controlled transience in Cucurbituril based tandem nanozyme. J Colloid Interface Sci 2022; 614:172-180. [DOI: 10.1016/j.jcis.2022.01.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 02/02/2023]
|
33
|
Sharma C, Walther A. Self‐Regulating Colloidal Co‐Assemblies That Accelerate Their Own Destruction via Chemo‐Structural Feedback. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charu Sharma
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz 55128 Mainz Germany
- Cluster of Excellence livMats @ FIT Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg 79098 Freiburg Germany
| |
Collapse
|
34
|
Schwarz PS, Tena-Solsona M, Dai K, Boekhoven J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem Commun (Camb) 2022; 58:1284-1297. [PMID: 35014639 DOI: 10.1039/d1cc06428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack the complexity and sophistication of biological assemblies. Those assemblies are non-equilibrium structures that rely on the constant consumption of energy transduced from the hydrolysis of chemical fuels like ATP and GTP, which endows them with dynamic properties, e.g., temporal and spatial control and self-healing ability. Thus, to synthesize life-like materials, we have to find a reaction cycle that converts chemical energy to regulate self-assembly. We and others recently found that this can be done by a reaction cycle that hydrates carbodiimides. This feature article aims to provide an overview of how the energy transduced from carbodiimide hydration can alter the function of molecules and regulate molecular assemblies. The goal is to offer the reader design considerations for carbodiimide-driven reaction cycles to create a desired morphology or function of the assembly and ultimately to push chemically fueled self-assembly further towards the bottom-up synthesis of life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Marta Tena-Solsona
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Kun Dai
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany
| |
Collapse
|
35
|
Niebuur BJ, Hegels H, Tena-Solsona M, Schwarz PS, Boekhoven J, Papadakis CM. Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity. J Phys Chem B 2021; 125:13542-13551. [PMID: 34851128 DOI: 10.1021/acs.jpcb.1c08034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate active droplets that form at the expense of a chemical fuel in aqueous buffer and vanish autonomously. Dynamic light scattering reveals the scattered intensity, the hydrodynamic radius, and the width of the size distribution with high precision as well as high temporal and spatial resolutions. Comparing the resulting time-dependent behavior of the droplet characteristics with the time-dependent concentration of the anhydrides, the roles of the chemical reaction cycle and of colloidal growth processes are elucidated. The droplet sizes and lifetimes depend strongly on the hydrophobicity of the precursor, and the growth rate is found to correlate with the deactivation rate of the product.
Collapse
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Hendrik Hegels
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Marta Tena-Solsona
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,Institute for Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
| | - Patrick S Schwarz
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,Institute for Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
| | - Christine M Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
36
|
Schwarz PS, Tebcharani L, Heger JE, Müller-Buschbaum P, Boekhoven J. Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chem Sci 2021; 12:9969-9976. [PMID: 34349967 PMCID: PMC8317627 DOI: 10.1039/d1sc02561a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022] Open
Abstract
There is an increasing demand for transient materials with a predefined lifetime like self-erasing temporary electronic circuits or transient biomedical implants. Chemically fueled materials are an example of such materials; they emerge in response to chemical fuel, and autonomously decay as they deplete it. However, these materials suffer from a slow, typically first order decay profile. That means that over the course of the material's lifetime, its properties continuously change until it is fully decayed. Materials that have a sharp on-off response are self-immolative ones. These degrade rapidly after an external trigger through a self-amplifying decay mechanism. However, self-immolative materials are not autonomous; they require a trigger. We introduce here materials with the best of both, i.e., materials based on chemically fueled emulsions that are also self-immolative. The material has a lifetime that can be predefined, after which it autonomously and rapidly degrades. We showcase the new material class with self-expiring labels and drug-delivery platforms with a controllable burst-release.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Laura Tebcharani
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Julian E Heger
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department, Technische Universität München James-Franck-Str. 1 85748 Garching Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstr. 1 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| |
Collapse
|
37
|
Nguindjel AC, Korevaar PA. Self‐Sustained Marangoni Flows Driven by Chemical Reactions**. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Déborah C. Nguindjel
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
38
|
Heckel J, Batti F, Mathers RT, Walther A. Spinodal decomposition of chemically fueled polymer solutions. SOFT MATTER 2021; 17:5401-5409. [PMID: 33969370 DOI: 10.1039/d1sm00515d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Out-of-equilibrium phase transitions driven by dissipation of chemical energy are a common mechanism for morphological organization and temporal programming in biology. Inspired by this, dissipative self-assembly utilizes chemical reaction networks (CRNs) that consume high-energy molecules (chemical fuels) to generate transient structures and functionality. While a wide range of chemical fuels and building blocks are now available for chemically fueled systems, so far little attention has been paid to the phase-separation process itself. Herein, we investigate the chemically fueled spinodal decomposition of poly(norbornene dicarboxylic acid) (PNDAc) solution, which is driven by a cyclic chemical reaction network. Our analysis encompasses both the molecular level in terms of the CRN, but also the phase separation process. We investigate the morphology of formed domains, as well as the kinetics and mechanism of domain growth, and develop a kinetic/thermodynamic hybrid model to not only rationalize the dependence of the system on fuel concentration and pH, but also open pathways towards predictive design of future fueled polymer systems.
Collapse
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Fabio Batti
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, PA 15068, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany. and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|