1
|
Berenjian A, Mahdinia E, Demirci A. Scaling up biofilm bioreactors for enhanced menaquinone-7 production. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03155-z. [PMID: 40186773 DOI: 10.1007/s00449-025-03155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
The health benefits of menaquinone-7 (MK-7) are well-established, and its production through fermentation techniques is widespread. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. The scalability of this biofilm reactor from a 2-L benchtop scale in our laboratory and its potential for commercial applications pose significant unresolved questions. Therefore, the current research was aimed to scale up the biofilm reactor from bench scale (2-L) to the pilot scale (30-L) bioreactor. Three strategies were evaluated to understand their impact on MK-7 biosynthesis during bioreactor volume expansion: volumetric oxygen mass transfer coefficient (kLa), agitation power input per unit volume (P/V), and impeller tip velocity (Vtip). While kLa was successfully maintained during scaling, P/V and Vtip varied and were assessed for their influence on MK-7 production. After investigating these methods, it was found that the volumetric oxygen mass transfer coefficient (kLa) constant method proved to be the most effective one. The optimum MK-7 concentration achieved was 21.0 ± 1.0 mg/L, comparable to the highest MK-7 concentration of 20.6 ± 1.0 attained at the 2-L scale. This showcases the scalability of biofilm bioreactor technology and its promising potential for commercial production of MK-7. Furthermore, we explored the potential of fed-batch glucose addition to the base media in the biofilm reactor to enhance MK-7 concentration at the 30-L scale. Remarkably, results demonstrated that fed-batch strategy significantly increased MK-7 concentrations to 28.7 ± 0.3 mg/L, which made it almost 2.3-fold higher than levels produced in suspended-cell bioreactors. This finding highlights the potential of biofilm reactors as a promising replacement to the current static fermentation strategies for commercial production of MK-7.
Collapse
Affiliation(s)
- Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Agricultural and Biological Engineering, 221 Agricultural Engineering Building, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ehsan Mahdinia
- Stack Family Center for Biopharmaceutical Education and Training, Albany College of Pharmacy and Health Sciences, Albany, NY, 12203, USA
| | - Ali Demirci
- Department of Agricultural and Biological Engineering, 221 Agricultural Engineering Building, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Bai T, Li J, Chi X, Li H, Tang Y, Liu Z, Ma X. Cooperative and Independent Functionality of tmRNA and SmpB in Aeromonas veronii: A Multifunctional Exploration Beyond Ribosome Rescue. Int J Mol Sci 2025; 26:409. [PMID: 39796263 PMCID: PMC11722516 DOI: 10.3390/ijms26010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.
Collapse
Affiliation(s)
- Taipeng Bai
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Juanjuan Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Xue Chi
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Hong Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Yanqiong Tang
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xiang Ma
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| |
Collapse
|
3
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Liu K, Wang J, Li F, Wang R, Zeng Q, Zhang Z, Liu H, Li P. Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition. Microorganisms 2024; 12:2657. [PMID: 39770859 PMCID: PMC11728471 DOI: 10.3390/microorganisms12122657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Pullulan is an extracellular polysaccharide produced via the fermentation of Aureobasidium pullulans. However, high sugar concentrations and hyperosmotic stress limit pullulan biosynthesis during the fermentation process. Therefore, we investigated the effects of proline supplementation on A. pullulans growth and pullulan biosynthesis under high sugar and hyperosmotic stress using physiological, biochemical, and transcriptomic analyses. High sugar concentrations significantly inhibited A. pullulans growth and pullulan biosynthesis. High sugar and hyperosmotic stress conditions significantly increased intracellular proline content in A. pullulans. However, treatment with proline (400 mg/L proline) significantly increased biomass and pullulan yield by 10.75% and 30.06% (174.8 g/L), respectively, compared with those in the control group. To further investigate the effect of proline on the fermentation process, we performed scanning electron microscopy and examined the activities of key fermentation enzymes. Proline treatment preserved cell integrity and upregulated the activities of key enzymes involved in pullulan biosynthesis. Transcriptome analysis revealed that most differentially expressed genes in the proline group were associated with metabolic pathways, including glycolysis/gluconeogenesis, pyruvate metabolism, and sulfur metabolism. Conclusively, proline supplementation protects A. pullulans against high sugar and hyperosmotic stress, providing a new theoretical basis and strategy for the efficient industrial production of pullulans.
Collapse
Affiliation(s)
- Keyi Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.L.); (J.W.); (R.W.); (H.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Junqing Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.L.); (J.W.); (R.W.); (H.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Feng Li
- Shandong Shendong Intelligent Equipment Co., Ltd., Dezhou 253000, China; (F.L.); (Z.Z.)
| | - Ruiming Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.L.); (J.W.); (R.W.); (H.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qingming Zeng
- Shandong Mimei Biological Technology Co., Ltd., Weifang 262600, China;
| | - Zhenxing Zhang
- Shandong Shendong Intelligent Equipment Co., Ltd., Dezhou 253000, China; (F.L.); (Z.Z.)
| | - Hongwei Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.L.); (J.W.); (R.W.); (H.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Piwu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.L.); (J.W.); (R.W.); (H.L.)
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Kaboudari A, Aliakbarlu J, Mehdizadeh T. Simultaneous Effects of Food-related Stresses on the Antibiotic Resistance of Foodborne Salmonella Serotypes. J Food Prot 2024; 87:100350. [PMID: 39168450 DOI: 10.1016/j.jfp.2024.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance has become one of the most critical issues in the field of public health in recent years. Exposure to food environment stresses may result in the development of antibiotic resistance in Salmonella. The present study aimed to investigate the simultaneous effects of food-related stresses (osmotic pressure, acid, heat, cold, and freezing stresses) on the antibiotic resistance changes in Salmonella Enteritidis and Salmonella Typhimurium. A factorial design with five factors at two levels was used to evaluate the main and interactive effects of stress factors on the antibiotic resistance of Salmonella serotypes. The changes in the antibiotic resistance of Salmonella serotypes were evaluated using the disc diffusion assay. The results showed that the different stresses had different effects on the antibiotic resistance of Salmonella serotypes. The freezing time and osmotic stresses had the most significant effects on the antibiotic resistance (P < 0.05). S. Enteritidis showed the slightest changes after exposure to stresses. The results also showed that a low level (24 h) of freezing time decreased the antibiotic resistance, but at a high level (96 h) increased it. The results emphasized that food processing and storage conditions should be considered as crucial factors in developing antibiotic resistance in Salmonella.
Collapse
Affiliation(s)
- Ata Kaboudari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran.
| | - Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
6
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Wang X, Kang H, Huang K, Guo M, Wu Y, Ying T, Liu Y, Wei D. Antibody Nanotweezer Constructing Bivalent Transistor-Biomolecule Interface with Spatial Tolerance. NANO LETTERS 2024; 24:3914-3921. [PMID: 38513214 DOI: 10.1021/acs.nanolett.3c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Establishing a multivalent interface between the biointerface of a living system and electronic device is vital to building intelligent bioelectronic systems. How to achieve multivalent binding with spatial tolerance at the nanoscale remains challenging. Here, we report an antibody nanotweezer that is a self-adaptive bivalent nanobody enabling strong and resilient binding between transistor and envelope proteins at biointerfaces. The antibody nanotweezer is constructed by a DNA framework, where the nanoscale patterning of nanobodies along with their local spatial adaptivity enables simultaneous recognition of target epitopes without binding stress. As such, effective binding affinity increases by 1 order of magnitude compared with monovalent antibody. The antibody nanotweezer operating on transistor offers enhanced signal transduction, which is implemented to detect clinical pathogens, showing ∼100% overall agreement with PCR results. This work provides a perspective of engineering multivalent interfaces between biosystems with solid-state devices, holding great potential for organoid intelligence on a chip.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Keke Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingquan Guo
- Shanghai Institute of Phage, Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Wang X, Xia B, Hao Z, Kang H, Liu W, Chen Y, Jiang Q, Liu J, Gou J, Dong B, Wee ATS, Liu Y, Wei D. A closed-loop catalytic nanoreactor system on a transistor. SCIENCE ADVANCES 2023; 9:eadj0839. [PMID: 37729411 PMCID: PMC10511191 DOI: 10.1126/sciadv.adj0839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Binbin Xia
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Hao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qunfeng Jiang
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Jingyuan Liu
- Global Clinical Operation, Johnson & Johnson, Shanghai 200233, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Naamala J, Subramanian S, Msimbira LA, Smith DL. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H. Front Microbiol 2023; 14:1206152. [PMID: 37700863 PMCID: PMC10493332 DOI: 10.3389/fmicb.2023.1206152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Gan Y, Bai M, Lin X, Liu K, Huang B, Jiang X, Liu Y, Gao C. Improvement of macrolactins production by the genetic adaptation of Bacillus siamensis A72 to saline stress via adaptive laboratory evolution. Microb Cell Fact 2022; 21:147. [PMID: 35854349 PMCID: PMC9294813 DOI: 10.1186/s12934-022-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Macrolactins, a type of macrolide antibiotic, are toxic to the producer strains. As such, its level is usually maintained below the lethal concentration during the fermentation process. To improve the production of macrolactins, we applied adaptive laboratory evolution technology to engineer a saline-resistant mutant strain. The hypothesis that strains with saline resistance show improved macrolactins production was investigated. RESULTS Using saline stress as a selective pressure, we engineered a mutant strain with saline resistance coupled with enhanced macrolactins production within 60 days using a self-made device. As compared with the parental strain, the evolved strain produced macrolactins with 11.93% improvement in non-saline stress fermentation medium containing 50 g/L glucose, when the glucose concentration increased to 70 g/L, the evolved strain produced macrolactins with 71.04% improvement. RNA sequencing and metabolomics results revealed that amino acid metabolism was involved in the production of macrolactins in the evolved strain. Furthermore, genome sequencing of the evolved strain revealed a candidate mutation, hisDD41Y, that was causal for the improved MLNs production, it was 3.42 times higher than the control in the overexpression hisDD41Y strain. Results revealed that saline resistance protected the producer strain from feedback inhibition of end-product (macrolide antibiotic), resulting in enhanced MLNs production. CONCLUSIONS In the present work, we successfully engineered a mutant strain with enhanced macrolactins production by adaptive laboratory evolution using saline stress as a selective pressure. Based on physiological, transcriptomic and genetic analysis, amino acid metabolism was found to benefit macrolactins production improvement. Our strategy might be applicable to improve the production of other kinds of macrolide antibiotics and other toxic compounds. The identification of the hisD mutation will allow for the deduction of metabolic engineering strategies in future research.
Collapse
Affiliation(s)
- Yuman Gan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiao Lin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Bingyao Huang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Xiaodong Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, 530001, People's Republic of China.
| |
Collapse
|
12
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
13
|
Feng Y, Ming T, Zhou J, Lu C, Wang R, Su X. The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods 2022; 11:foods11101503. [PMID: 35627073 PMCID: PMC9140498 DOI: 10.3390/foods11101503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus (S. aureus) has a strong tolerance to high salt stress. It is a major reason as to why the contamination of S. aureus in salted food cannot be eradicated. To elucidate its response and survival mechanisms, changes in the morphology, biofilm formation, virulence, transcriptome, and metabolome of S. aureus were investigated. IsaA positively regulates and participates in the formation of biofilm. Virulence was downregulated to reduce the depletion of nonessential cellular functions. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The MtsABC transport system was downregulated to reduce ion transport and signaling. Aminoacyl-tRNA biosynthesis was upregulated to improve cellular homeostasis. The betaine biosynthesis pathway was upregulated to protect the active structure of proteins and nucleic acids. Within a 10% NaCl concentration, the L-proline content was upregulated to increase osmotic stability. In addition, 20 hub genes were identified through an interaction analysis. The findings provide theoretical support for the prevention and control of salt-tolerant bacteria in salted foods.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- College of Life Sciences, Tonghua Normal University, Tonghua 134000, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: ; Tel.: +86-574-8760-8368
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. Int J Mol Sci 2022; 23:ijms23020619. [PMID: 35054801 PMCID: PMC8775919 DOI: 10.3390/ijms23020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
Collapse
|
15
|
Moradinejad S, Trigui H, Maldonado JFG, Shapiro BJ, Terrat Y, Sauvé S, Fortin N, Zamyadi A, Dorner S, Prévost M. Metagenomic study to evaluate functional capacity of a cyanobacterial bloom during oxidation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Molina Mora JA, Montero-Manso P, García-Batán R, Campos-Sánchez R, Vilar-Fernández J, García F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021; 205:104411. [PMID: 33757842 DOI: 10.1016/j.biosystems.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental conditions, antibiotics, and other perturbations. Some studies have described common modulation and shared genes during stress response to different types of disturbances (termed as perturbome), leading to the idea of central control at the molecular level. We implemented a robust machine learning approach to identify and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model. Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features at the systems level were included to describe the perturbome elements. We were able to select and describe 46 core response genes associated with multiple perturbations in P. aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. Molecular annotations, patterns in expression levels, and topological features in molecular networks revealed biological functions of biosynthesis, binding, and metabolism, many of them related to DNA damage repair and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to implemented and assessed algorithms, including data partitioning, classification approaches, and metrics. Altogether, this work offers a different and robust framework to select genes using a machine learning approach.
Collapse
Affiliation(s)
- Jose Arturo Molina Mora
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | | | - Raquel García-Batán
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Fernando García
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| |
Collapse
|
17
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
18
|
Umair M, Sun N, Du H, Hui N, Altaf M, Du B, Yin S, Liu C. Bacterial Communities Are More Sensitive to Water Addition Than Fungal Communities Due to Higher Soil K and Na in a Degraded Karst Ecosystem of Southwestern China. Front Microbiol 2020; 11:562546. [PMID: 33240226 PMCID: PMC7680866 DOI: 10.3389/fmicb.2020.562546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Precipitation is predicted to become more intense in Southern China in the context of climate change; however, the responses of microbial communities to variations in soil moisture have not been well documented for karst areas. The climate is typically in a subtropical monsoon category with two different seasons: a dry season (December-May) and a wet season (June-November). Based on a randomized complete block design (RCBD), a water addition experiment (0, +20, +40, and +60% relative to local precipitation) was established in April 2017, with five replicates, in a degraded grass-shrub community. Sampling was performed in May and at the end of August of 2017. Macroelements (C, H, N, P, K, Ca, Mg, and S), microelements (Mn, Fe, Zn, and Cu), and non-essential elements (Na, Al, and Si) were quantified in the soil. The total DNA of the soil samples was analyzed through 16S rRNA amplicon by Illumina Miseq. Subsequent to the addition of water during both the dry and wet seasons, the concentrations of non-metal elements (C, H, N, S, and P, except for Si) in the soil remained relatively stable; however, metal elements (K, Na, Fe, and Mg, along with Si) increased significantly, whereas Zn and Ca decreased. During the dry season, fungal and bacterial communities were significantly distinct from those during the wet season along the PC axis 1 (p < 0.001). Water addition did not alter the compositions of bacterial or fungal communities during the dry season. However, during the wet season, water addition altered the compositions of bacterial rather than fungal community based on principal component analysis. At the phylum level, the relative abundance of Actinobacteria increased with water addition and had a significantly positive correlation with K+ (r 2 = 0.70, p < 0.001) and Na+ (r 2 = 0.36, p < 0.01) contents, whereas that of Acidobacteria, Planctomycetes, and Verrucomicrobia decreased and showed negative correlation with soil K and Na content, and no changes were observed for the fungal phyla. This suggests that the karst bacterial communities can be influenced by the addition of water during the wet season likely linked to changes in soil K and Na contents. These findings implied that increased rainfall might alter the elemental compositions of karst soils, and bacterial communities are likely to be more sensitive to variations in soil moisture in contrast to their fungal counterparts.
Collapse
Affiliation(s)
- Muhammad Umair
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Hongmei Du
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Altaf
- Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Urban Forest Research Station, State Forestry and Grassland Administration, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
19
|
Casey D, Sleator RD. A genomic analysis of osmotolerance in Staphylococcus aureus. Gene 2020; 767:145268. [PMID: 33157201 DOI: 10.1016/j.gene.2020.145268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
A key phenotypic characteristic of the Gram-positive bacterial pathogen, Staphylococcus aureus, is its ability to grow in low aw environments. A homology transfer based approach, using the well characterised osmotic stress response systems of Bacillus subtilis and Escherichia coli, was used to identify putative osmotolerance loci in Staphylococcus aureus ST772-MRSA-V. A total of 17 distinct putative hyper and hypo-osmotic stress response systems, comprising 78 genes, were identified. The ST772-MRSA-V genome exhibits significant degeneracy in terms of the osmotic stress response; with three copies of opuD, two copies each of nhaK and mrp/mnh, and five copies of opp. Furthermore, regulation of osmotolerance in ST772-MRSA-V appears to be mediated at the transcriptional, translational, and post-translational levels.
Collapse
Affiliation(s)
- Dylan Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland.
| |
Collapse
|
20
|
Fuchino K, Bruheim P. Increased salt tolerance in Zymomonas mobilis strain generated by adaptative evolution. Microb Cell Fact 2020; 19:147. [PMID: 32690090 PMCID: PMC7372843 DOI: 10.1186/s12934-020-01406-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ethanologenic alphaproteobacterium Zymomonas mobilis has been acknowledged as a promising biofuel producer. There have been numerous efforts to engineer this species applicable for an industrial-scale bioethanol production. Although Z. mobilis is robustly resilient to certain abiotic stress such as ethanol, the species is known to be sensitive to saline stress at a mild concentration, which hampers its industrial use as an efficient biocatalyst. To overcome this issue, we implemented a laboratory adaptive evolution approach to obtain salt tolerant Z. mobilis strain. RESULTS During an adaptive evolution, we biased selection by cell morphology to exclude stressed cells. The evolved strains significantly improved growth and ethanol production in the medium supplemented with 0.225 M NaCl. Furthermore, comparative metabolomics revealed that the evolved strains did not accumulate prototypical osmolytes, such as proline, to counter the stress during their growth. The sequenced genomes of the studied strains suggest that the disruption of ZZ6_1149 encoding carboxyl-terminal protease was likely responsible for the improved phenotype. CONCLUSIONS The present work successfully generated strains able to grow and ferment glucose under the saline condition that severely perturbs parental strain physiology. Our approach to generate strains, cell shape-based diagnosis and selection, might be applicable to other kinds of strain engineering in Z. mobilis.
Collapse
Affiliation(s)
- Katsuya Fuchino
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
22
|
Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata. Extremophiles 2020; 24:421-432. [PMID: 32266565 PMCID: PMC7174268 DOI: 10.1007/s00792-020-01168-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/05/2022]
Abstract
For osmoadaptation the halophilic bacterium Halomonas elongata synthesizes as its main compatible solute the aspartate derivative ectoine. H. elongata does not rely entirely on synthesis but can accumulate ectoine by uptake from the surrounding environment with the help of the osmoregulated transporter TeaABC. Disruption of the TeaABC-mediated ectoine uptake creates a strain that is constantly losing ectoine to the medium. However, the efflux mechanism of ectoine in H. elongata is not yet understood. H. elongata possesses four genes encoding mechanosensitive channels all of which belong to the small conductance type (MscS). Analysis by qRT-PCR revealed a reduction in transcription of the mscS genes with increasing salinity. The response of H. elongata to hypo- and hyperosmotic shock never resulted in up-regulation but rather in down-regulation of mscS transcription. Deletion of all four mscS genes created a mutant that was unable to cope with hypoosmotic shock. However, the knockout mutant grew significantly faster than the wildtype at high salinity of 2 M NaCl, and most importantly, still exported 80% of the ectoine compared to the wildtype. We thus conclude that a yet unknown system, which is independent of mechanosensitive channels, is the major export route for ectoine in H. elongata.
Collapse
|
23
|
Mendonça AA, da Silva PKN, Calazans TLS, de Souza RB, Elsztein C, de Morais Junior MA. Gene regulation of the Lactobacillus vini in response to industrial stress in the fuel ethanol production. Microbiol Res 2020; 236:126450. [PMID: 32146295 DOI: 10.1016/j.micres.2020.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The industrial ethanol fermentation imposes several stresses to microorganisms. However, some bacterial species are well adapted and manage to endure these harmful conditions. Lactobacillus vini is one of the most found bacteria in these environments, indicating the existence of efficient tolerance mechanisms. In view of this premise, the present study aimed to describe the tolerance of L. vini to several stressing agents encounter in industrial environments and the genetic components of the stress response. In general, L. vini showed significant tolerance to stressors commonly found in fuel-ethanol fermentations, and only doses higher than normally reached in processes restrained its growth. The lag phase and the growth rate were the most responsive kinetic parameter affected. Gene expression analysis revealed that uspII gene positively responded to all conditions tested, a typical profile of a general stress response gene. In addition, the results also revealed aspects of regulatory modules of co-expressed genes responding to different stresses, and also the similarities of response mechanism with basis in common cellular damages. Altogether, these data contribute to uncover the factors that could favour L. vini in the industrial fermentation which could be shared with other well adapted species and reports the first stress response genes in this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
24
|
Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Front Microbiol 2019; 10:2455. [PMID: 31736901 PMCID: PMC6828654 DOI: 10.3389/fmicb.2019.02455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile.,Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andre Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
25
|
Park J, Lee HH, Jung H, Seo YS. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J Microbiol 2019; 57:781-794. [DOI: 10.1007/s12275-019-9330-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
26
|
Almeida EL, Carrillo Rincón AF, Jackson SA, Dobson ADW. Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential. Front Microbiol 2019; 10:1713. [PMID: 31404169 PMCID: PMC6676996 DOI: 10.3389/fmicb.2019.01713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Abstract
The emergence of antibiotic resistant microorganisms has led to an increased need for the discovery and development of novel antimicrobial compounds. Frequent rediscovery of the same natural products (NPs) continues to decrease the likelihood of the discovery of new compounds from soil bacteria. Thus, efforts have shifted toward investigating microorganisms and their secondary metabolite biosynthesis potential, from diverse niche environments, such as those isolated from marine sponges. Here we investigated at the genomic level two Streptomyces spp. strains, namely SM17 and SM18, isolated from the marine sponge Haliclona simulans, with previously reported antimicrobial activity against clinically relevant pathogens; using single molecule real-time (SMRT) sequencing. We performed a series of comparative genomic analyses on SM17 and SM18 with their closest terrestrial relatives, namely S. albus J1074 and S. pratensis ATCC 33331 respectively; in an effort to provide further insights into potential environmental niche adaptations (ENAs) of marine sponge-associated Streptomyces, and on how these adaptations might be linked to their secondary metabolite biosynthesis potential. Prediction of secondary metabolite biosynthetic gene clusters (smBGCs) indicated that, even though the marine isolates are closely related to their terrestrial counterparts at a genomic level; they potentially produce different compounds. SM17 and SM18 displayed a better ability to grow in high salinity medium when compared to their terrestrial counterparts, and further analysis of their genomes indicated that they possess a pool of 29 potential ENA genes that are absent in S. albus J1074 and S. pratensis ATCC 33331. This ENA gene pool included functional categories of genes that are likely to be related to niche adaptations and which could be grouped based on potential biological functions such as osmotic stress, defense; transcriptional regulation; symbiotic interactions; antimicrobial compound production and resistance; ABC transporters; together with horizontal gene transfer and defense-related features.
Collapse
Affiliation(s)
| | | | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Eriksson EK, Edwards K, Grad P, Gedda L, Agmo Hernández V. Osmoprotective effect of ubiquinone in lipid vesicles modelling the E. coli plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1388-1396. [DOI: 10.1016/j.bbamem.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/21/2023]
|
28
|
Alreshidi MM, Dunstan RH, Macdonald MM, Smith ND, Gottfries J, Roberts TK. Amino acids and proteomic acclimation of Staphylococcus aureus when incubated in a defined minimal medium supplemented with 5% sodium chloride. Microbiologyopen 2019; 8:e00772. [PMID: 30739392 PMCID: PMC6562129 DOI: 10.1002/mbo3.772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a versatile bacterium that can adapt to survive and grow in a wide range of salt concentrations. This study investigated whether the cells could mount a response to survive a challenge of 5% NaCl in a minimal incubation medium that would not support cell replication. Cells were grown in liquid culture, washed and then incubated for 90 min at 37°C in a medium that contained only glycine and glucose as substrates in PBS plus trace elements. The control cells were compared with a treatment group which was incubated with an additional 5% NaCl. Significantly more glycine was taken up by the cells exposed to 5% NaCl compared with control cells, and both groups consumed 99% of the glucose supplied. The NaCl treated cells had significantly higher cytoplasmic levels of proline and glutamic acid as well as lower levels of alanine and methionine compared with the controls (p < 0.05). The levels of the two major cytoplasmic amino acids, aspartic acid and glycine, remained constant in control and treated cells. Proteomic analyses revealed that 10 proteins showed differential responses between the control and treatment groups. The reductions in proteins were primarily associated with processes of protein biosynthesis, pathogenicity, and cell adhesion. Since cell numbers remained constant during the incubation period in minimal medium, it was concluded that there was no cell division to support population growth. The results provided evidence that the cells in the minimal medium exposed to the NaCl treatment underwent in situ homeostatic changes to adjust to the new environmental conditions. It was proposed that this represented a phenotypic shift to form cells akin to small colony variants, with lower metabolic rates and lower levels of key proteins associated with pathogenicity.
Collapse
Affiliation(s)
- Mousa M. Alreshidi
- Department of Biology, College of ScienceUniversity of HailHailSaudi Arabia
| | - R. Hugh Dunstan
- Metabolic Research Group, Faculty of ScienceSchool of Environmental and Life SciencesCallaghanNew South WalesAustralia
| | - Margaret M. Macdonald
- Metabolic Research Group, Faculty of ScienceSchool of Environmental and Life SciencesCallaghanNew South WalesAustralia
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility (ABRF)University of NewcastleCallaghanNew South WalesAustralia
| | - Johan Gottfries
- Department of ChemistryGothenburg UniversityGothenburgSweden
| | - Tim K. Roberts
- Metabolic Research Group, Faculty of ScienceSchool of Environmental and Life SciencesCallaghanNew South WalesAustralia
| |
Collapse
|
29
|
|
30
|
Durán RE, Méndez V, Rodríguez-Castro L, Barra-Sanhueza B, Salvà-Serra F, Moore ERB, Castro-Nallar E, Seeger M. Genomic and Physiological Traits of the Marine Bacterium Alcaligenes aquatilis QD168 Isolated From Quintero Bay, Central Chile, Reveal a Robust Adaptive Response to Environmental Stressors. Front Microbiol 2019; 10:528. [PMID: 31024465 PMCID: PMC6460240 DOI: 10.3389/fmicb.2019.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Alcaligenes aquatilis QD168 is a marine, aromatic hydrocarbon-degrading bacterium, isolated from an oil-polluted sediment of Quintero Bay, an industrial-coastal zone that has been chronically impacted by diverse pollutants. The aims of this study were to characterize the phylogenomic positions of Alcaligenes spp. and to characterize the genetic determinants and the physiological response of A. aquatilis QD168 to model environmental stressors (benzene, oxidizing agents, and salt). Phylogenomic analyses, using 35 housekeeping genes, clustered A. aquatilis QD168 with four other strains of Alcaligenes spp. (A. aquatilis BU33N, A. faecalis JQ135, A. faecalis UBA3227, and A. faecalis UBA7629). Genomic sequence analyses of A. aquatilis QD168 with 25 Alcaligenes spp., using ANIb, indicated that A. aquatilis BU33N is the closest related strain, with 96.8% ANIb similarity. Strain QD168 harbors 95 genes encoding proteins of seven central catabolic pathways, as well as sixteen peripheral catabolic pathways/reactions for aromatic compounds. A. aquatilis QD168 was able to grow on 3-hydroxybenzoate, 4-hydroxybenzoate, benzoate, benzene, 3-hydroxycinnamate, cinnamate, anthranilate, benzamide, 4-aminobenzoate, nicotinate, toluene, biphenyl and tryptophan, as sole carbon or nitrogen source. Benzene degradation was further analyzed by growth, metabolite identification and gene expression analyses. Benzene strongly induced the expression of the genes encoding phenol hydroxylase (dmpP) and catechol 1,2-dioxygenase (catA). Additionally, 30 genes encoding transcriptional regulators, scavenging enzymes, oxidative damage repair systems and isozymes involved in oxidative stress response were identified. Oxidative stress response of strain QD168 to hydrogen peroxide and paraquat was characterized, demonstrating that A. aquatilis QD168 is notably more resistant to paraquat than to H2O2. Genetic determinants (47 genes) for osmoprotective responses were identified, correlating with observed high halotolerance by strain QD168. The physiological adaptation of A. aquatilis QD168 to environmental stressors such as pollutants, oxidative stress and salinity may be exploited for bioremediation of oil-polluted saline sites.
Collapse
Affiliation(s)
- Roberto E Durán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Laura Rodríguez-Castro
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Bárbara Barra-Sanhueza
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden.,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Culture Collection University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química - Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
31
|
Culham DE, Marom D, Boutin R, Garner J, Ozturk TN, Sahtout N, Tempelhagen L, Lamoureux G, Wood JM. Dual Role of the C-Terminal Domain in Osmosensing by Bacterial Osmolyte Transporter ProP. Biophys J 2018; 115:2152-2166. [PMID: 30448037 PMCID: PMC6289098 DOI: 10.1016/j.bpj.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022] Open
Abstract
ProP is a member of the major facilitator superfamily, a proton-osmolyte symporter, and an osmosensing transporter. ProP proteins share extended cytoplasmic carboxyl terminal domains (CTDs) implicated in osmosensing. The CTDs of the best characterized, group A ProP orthologs, terminate in sequences that form intermolecular, antiparallel α-helical coiled coils (e.g., ProPEc, from Escherichia coli). Group B orthologs lack that feature (e.g., ProPXc, from Xanthomonas campestris). ProPXc was expressed and characterized in E. coli to further elucidate the role of the coiled coil in osmosensing. The activity of ProPXc was a sigmoid function of the osmolality in cells and proteoliposomes. ProPEc and ProPXc attained similar activities at the same expression level in E. coli. ProPEc transports proline and glycine betaine with comparable high affinities at low osmolality. In contrast, proline weakly inhibited high-affinity glycine-betaine uptake via ProPXc. The KM for proline uptake via ProPEc increases dramatically with the osmolality. The KM for glycine-betaine uptake via ProPXc did not. Thus, ProPXc is an osmosensing transporter, and the C-terminal coiled coil is not essential for osmosensing. The role of CTD-membrane interaction in osmosensing was examined further. As for ProPEc, the ProPXc CTD co-sedimented with liposomes comprising E. coli phospholipid. Molecular dynamics simulations illustrated association of the monomeric ProPEc CTD with the membrane surface. Comparison with the available NMR structure for the homodimeric coiled coil formed by the ProPEc-CTD suggested that membrane association and homodimeric coiled-coil formation by that peptide are mutually exclusive. The membrane fluidity in liposomes comprising E. coli phospholipid decreased with increasing osmolality in the range relevant for ProP activation. These data support the proposal that ProP activates as cellular dehydration increases cytoplasmic cation concentration, releasing the CTD from the membrane surface. For group A orthologs, this also favors α-helical coiled-coil formation that stabilizes the transporter in an active form.
Collapse
Affiliation(s)
- Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - David Marom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca Boutin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer Garner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada
| | - Tugba Nur Ozturk
- Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada; Department of Physics, Concordia University, Montréal, Québec, Canada
| | - Naheda Sahtout
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Tempelhagen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Guillaume Lamoureux
- Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada; Department of Physics, Concordia University, Montréal, Québec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
32
|
Ilgrande C, Leroy B, Wattiez R, Vlaeminck SE, Boon N, Clauwaert P. Metabolic and Proteomic Responses to Salinity in Synthetic Nitrifying Communities of Nitrosomonas spp. and Nitrobacter spp. Front Microbiol 2018; 9:2914. [PMID: 30555445 PMCID: PMC6284046 DOI: 10.3389/fmicb.2018.02914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Typically, nitrification is a two-stage microbial process and is key in wastewater treatment and nutrient recovery from waste streams. Changes in salinity represent a major stress factor that can trigger response mechanisms, impacting the activity and the physiology of bacteria. Despite its pivotal biotechnological role, little information is available on the specific response of nitrifying bacteria to varying levels of salinity. In this study, synthetic communities of ammonia-oxidizing bacteria (AOB Nitrosomonas europaea and/or Nitrosomonas ureae) and nitrite-oxidizing bacteria (NOB Nitrobacter winogradskyi and/or Nitrobacter vulgaris) were tested at 5, 10, and 30 mS cm-1 by adding sodium chloride to the mineral medium (0, 40, and 200 mM NaCl, respectively). Ammonia oxidation activity was less affected by salinity than nitrite oxidation. AOB, on their own or in combination with NOB, showed no significant difference in the ammonia oxidation rate among the three conditions. However, N. winogradskyi improved the absolute ammonia oxidation rate of both N. europaea and N. ureae. N. winogradskyi’s nitrite oxidation rate decreased to 42% residual activity upon exposure to 30 mS cm-1, also showing a similar behavior when tested with Nitrosomonas spp. The nitrite oxidation rate of N. vulgaris, as a single species, was not affected when adding sodium chloride up to 30 mS cm-1, however, its activity was completely inhibited when combined with Nitrosomonas spp. in the presence of ammonium/ammonia. The proteomic analysis of a co-culture of N. europaea and N. winogradskyi revealed the production of osmolytes, regulation of cell permeability and an oxidative stress response in N. europaea and an oxidative stress response in N. winogradskyi, as a result of increasing the salt concentration from 5 to 30 mS cm-1. A specific metabolic response observed in N. europaea suggests the role of carbon metabolism in the production of reducing power, possibly to meet the energy demands of the stress response mechanisms, induced by high salinity. For the first time, metabolic modifications and response mechanisms caused by the exposure to salinity were described, serving as a tool toward controllability and predictability of nitrifying systems exposed to salt fluctuations.
Collapse
Affiliation(s)
- Chiara Ilgrande
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research institute for Biosciences, University of Mons, Mons, Belgium
| | - Siegfried Elias Vlaeminck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Ronzheimer S, Warmbold B, Arnhold C, Bremer E. The GbsR Family of Transcriptional Regulators: Functional Characterization of the OpuAR Repressor. Front Microbiol 2018; 9:2536. [PMID: 30405586 PMCID: PMC6207618 DOI: 10.3389/fmicb.2018.02536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Accumulation of compatible solutes is a common stress response of microorganisms challenged by high osmolarity; it can be achieved either through synthesis or import. These processes have been intensively studied in Bacillus subtilis, where systems for the production of the compatible solutes proline and glycine betaine have been identified, and in which five transporters for osmostress protectants (Opu) have been characterized. Glycine betaine synthesis relies on the import of choline via the substrate-restricted OpuB system and the promiscuous OpuC transporter and its subsequent oxidation by the GbsAB enzymes. Transcription of the opuB and gbsAB operons is under control of the MarR-type regulator GbsR, which acts as an intracellular choline-responsive repressor. Modeling studies using the X-ray structure of the Mj223 protein from Methanocaldococcus jannaschii as the template suggest that GbsR is a homo-dimer with an N-terminal DNA-reading head and C-terminal dimerization domain; a flexible linker connects these two domains. In the vicinity of the linker region, an aromatic cage is predicted as the inducer-binding site, whose envisioned architecture resembles that present in choline and glycine betaine substrate-binding proteins of ABC transporters. We used bioinformatics to assess the phylogenomics of GbsR-type proteins and found that they are widely distributed among Bacteria and Archaea. Alignments of GbsR proteins and analysis of the genetic context of the corresponding structural genes allowed their assignment into four sub-groups. In one of these sub-groups of GbsR-type proteins, gbsR-type genes are associated either with OpuA-, OpuB-, or OpuC-type osmostress protectants uptake systems. We focus here on GbsR-type proteins, named OpuAR by us, that control the expression of opuA-type gene clusters. Using such a system from the marine bacterium Bacillus infantis, we show that OpuAR acts as a repressor of opuA transcription, where several compatible solutes (e.g., choline, glycine betaine, proline betaine) serve as its inducers. Site-directed mutagenesis studies allowed a rational improvement of the putative inducer-binding site in OpuAR with respect to the affinity of choline and glycine betaine binding. Collectively, our data characterize GbsR-/OpuAR-type proteins as an extended sub-group within the MarR-superfamily of transcriptional regulators and identify a novel type of substrate-inducible import system for osmostress protectants.
Collapse
Affiliation(s)
- Stefanie Ronzheimer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Bianca Warmbold
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Arnhold
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
34
|
OpuF, a New Bacillus Compatible Solute ABC Transporter with a Substrate-Binding Protein Fused to the Transmembrane Domain. Appl Environ Microbiol 2018; 84:AEM.01728-18. [PMID: 30097444 DOI: 10.1128/aem.01728-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
The accumulation of compatible solutes is a common defense of bacteria against the detrimental effects of high osmolarity. Uptake systems for these compounds are cornerstones in cellular osmostress responses because they allow the energy-preserving scavenging of osmostress protectants from environmental sources. Bacillus subtilis is well studied with respect to the import of compatible solutes and its five transport systems (OpuA, OpuB, OpuC, OpuD, and OpuE), for these stress protectants have previously been comprehensively studied. Building on this knowledge and taking advantage of the unabated appearance of new genome sequences of members of the genus Bacillus, we report here the discovery, physiological characterization, and phylogenomics of a new member of the Opu family of transporters, OpuF (OpuFA-OpuFB). OpuF is not present in B. subtilis but it is widely distributed in members of the large genus Bacillus OpuF is a representative of a subgroup of ATP-binding cassette (ABC) transporters in which the substrate-binding protein (SBP) is fused to the transmembrane domain (TMD). We studied the salient features of the OpuF transporters from Bacillus infantis and Bacillus panaciterrae by functional reconstitution in a B. subtilis chassis strain lacking known Opu transporters. A common property of the examined OpuF systems is their substrate profile; OpuF mediates the import of glycine betaine, proline betaine, homobetaine, and the marine osmolyte dimethylsulfoniopropionate (DMSP). An in silico model of the SBP domain of the TMD-SBP hybrid protein OpuFB was established. It revealed the presence of an aromatic cage, a structural feature commonly present in ligand-binding sites of compatible solute importers.IMPORTANCE The high-affinity import of compatible solutes from environmental sources is an important aspect of the cellular defense of many bacteria and archaea against the harmful effects of high external osmolarity. The accumulation of these osmostress protectants counteracts high-osmolarity-instigated water efflux, a drop in turgor to nonphysiological values, and an undue increase in molecular crowding of the cytoplasm; they thereby foster microbial growth under osmotically unfavorable conditions. Importers for compatible solutes allow the energy-preserving scavenging of osmoprotective and physiologically compliant organic solutes from environmental sources. We report here the discovery, exemplary physiological characterization, and phylogenomics of a new compatible solute importer, OpuF, widely found in members of the Bacillus genus. The OpuF system is a representative of a growing subgroup of ABC transporters in which the substrate-scavenging function of the substrate-binding protein (SBP) and the membrane-embedded substrate translocating subunit (TMD) are fused into a single polypeptide chain.
Collapse
|
35
|
Shao Q, Cortes MG, Trinh JT, Guan J, Balázsi G, Zeng L. Coupling of DNA Replication and Negative Feedback Controls Gene Expression for Cell-Fate Decisions. iScience 2018; 6:1-12. [PMID: 30240603 PMCID: PMC6137276 DOI: 10.1016/j.isci.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.
Collapse
Affiliation(s)
- Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Michael G Cortes
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Jingwen Guan
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
36
|
Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2018; 17:94. [PMID: 29908566 PMCID: PMC6004087 DOI: 10.1186/s12934-018-0939-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Background α-d-Glucosylglycerol (αGG) has beneficial functions as a moisturizing agent in cosmetics and potential as a health food material, and therapeutic agent. αGG serves as compatible solute in various halotolerant cyanobacteria such as Synechocystis sp. PCC 6803, which synthesizes αGG in a two-step reaction: The enzymatic condensation of ADP-glucose and glycerol 3-phosphate by GG-phosphate synthase (GGPS) is followed by the dephosphorylation of the intermediate by the GG-phosphate phosphatase (GGPP). The Gram-positive Corynebacterium glutamicum, an industrial workhorse for amino acid production, does not utilize αGG as a substrate and was therefore chosen for the development of a heterologous microbial production platform for αGG. Results Plasmid-bound expression of ggpS and ggpP from Synechocystis sp. PCC 6803 enabled αGG synthesis exclusively in osmotically stressed cells of C. glutamicum (pEKEx2-ggpSP), which is probably due to the unique intrinsic control mechanism of GGPS activity in response to intracellular ion concentrations. C. glutamicum was then engineered to optimize precursor supply for αGG production: The precursor for αGG synthesis ADP-glucose gets metabolized by both the glgA encoded glycogen synthase and the otsA encoded trehalose-6-phosphate synthase. Upon deletion of both genes the αGG concentration in culture supernatants was increased from 0.5 mM in C. glutamicum (pEKEx3-ggpSP) to 2.9 mM in C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP). Upon nitrogen limitation, which inhibits synthesis of amino acids as compatible solutes, C. glutamicum ΔotsA IMglgA (pEKEx3-ggpSP) produced more than 10 mM αGG (about 2 g L−1). Conclusions Corynebacterium glutamicum can be engineered as efficient platform for the production of the compatible solute αGG. Redirection of carbon flux towards αGG synthesis by elimination of the competing pathways for glycogen and trehalose synthesis as well as optimization of nitrogen supply is an efficient strategy to further optimize production of αGG. Electronic supplementary material The online version of this article (10.1186/s12934-018-0939-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Roenneke
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany.,Gutachterbüro U. Borchardt, Hennef (Sieg), Germany
| | - Natalie Rosenfeldt
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Sami M Derya
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Jens F Novak
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Kay Marin
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany.,Evonik Degussa GmbH, Halle (Westphalia), Germany
| | - Reinhard Krämer
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany
| | - Gerd M Seibold
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674, Cologne, Germany. .,Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
37
|
The Lysine 299 Residue Endows the Multisubunit Mrp1 Antiporter with Dominant Roles in Na + Resistance and pH Homeostasis in Corynebacterium glutamicum. Appl Environ Microbiol 2018. [PMID: 29523552 DOI: 10.1128/aem.00110-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Corynebacterium glutamicum is generally regarded as a moderately salt- and alkali-tolerant industrial organism. However, relatively little is known about the molecular mechanisms underlying these specific adaptations. Here, we found that the Mrp1 antiporter played crucial roles in conferring both environmental Na+ resistance and alkali tolerance whereas the Mrp2 antiporter was necessary in coping with high-KCl stress at alkaline pH. Furthermore, the Δmrp1 Δmrp2 double mutant showed the most-severe growth retardation and failed to grow under high-salt or alkaline conditions. Consistent with growth properties, the Na+/H+ antiporters of C. glutamicum were differentially expressed in response to specific salt or alkaline stress, and an alkaline stimulus particularly induced transcript levels of the Mrp-type antiporters. When the major Mrp1 antiporter was overwhelmed, C. glutamicum might employ alternative coordinate strategies to regulate antiport activities. Site-directed mutagenesis demonstrated that several conserved residues were required for optimal Na+ resistance, such as Mrp1A K299, Mrp1C I76, Mrp1A H230, and Mrp1D E136 Moreover, the chromosomal replacement of lysine 299 in the Mrp1A subunit resulted in a higher intracellular Na+ level and a more alkaline intracellular pH value, thereby causing a remarkable growth attenuation. Homology modeling of the Mrp1 subcomplex suggested two possible ion translocation pathways, and lysine 299 might exert its effect by affecting the stability and flexibility of the cytoplasm-facing channel in the Mrp1A subunit. Overall, these findings will provide new clues to the understanding of salt-alkali adaptation during C. glutamicum stress acclimatization.IMPORTANCE The capacity to adapt to harsh environments is crucial for bacterial survival and product yields, including industrially useful Corynebacterium glutamicum Although C. glutamicum exhibits a marked resistance to salt-alkaline stress, the possible mechanism for these adaptations is still unclear. Here, we present the physiological functions and expression patterns of C. glutamicum putative Na+/H+ antiporters and conserved residues of Mrp1 subunits, which respond to different salt and alkaline stresses. We found that the Mrp-type antiporters, particularly the Mrp1 antiporter, played a predominant role in maintaining intracellular nontoxic Na+ levels and alkaline pH homeostasis. Loss of the major Mrp1 antiporter had a profound effect on gene expression of other antiporters under salt or alkaline conditions. The lysine 299 residue may play its essential roles in conferring salt and alkaline tolerance by affecting the ion translocation channel of the Mrp1A subunit. These findings will contribute to a better understanding of Na+/H+ antiporters in sodium antiport and pH regulation.
Collapse
|
38
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
39
|
León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E. Compatible Solute Synthesis and Import by the Moderate Halophile Spiribacter salinus: Physiology and Genomics. Front Microbiol 2018; 9:108. [PMID: 29497403 PMCID: PMC5818414 DOI: 10.3389/fmicb.2018.00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Spiribacter are found worldwide and are abundant in ecosystems possessing intermediate salinities between seawater and saturated salt concentrations. Spiribacter salinus M19-40 is the type species of this genus and its first cultivated representative. In the habitats of S. salinus M19-40, high salinity is a key determinant for growth and we therefore focused on the cellular adjustment strategy to this persistent environmental challenge. We coupled these experimental studies to the in silico mining of the genome sequence of this moderate halophile with respect to systems allowing this bacterium to control its potassium and sodium pools, and its ability to import and synthesize compatible solutes. S. salinus M19-40 produces enhanced levels of the compatible solute ectoine, both under optimal and growth-challenging salt concentrations, but the genes encoding the corresponding biosynthetic enzymes are not organized in a canonical ectABC operon. Instead, they are scrambled (ectAC; ectB) and are physically separated from each other on the S. salinus M19-40 genome. Genomes of many phylogenetically related bacteria also exhibit a non-canonical organization of the ect genes. S. salinus M19-40 also synthesizes trehalose, but this compatible solute seems to make only a minor contribution to the cytoplasmic solute pool under osmotic stress conditions. However, its cellular levels increase substantially in stationary phase cells grown under optimal salt concentrations. In silico genome mining revealed that S. salinus M19-40 possesses different types of uptake systems for compatible solutes. Among the set of compatible solutes tested in an osmostress protection growth assay, glycine betaine and arsenobetaine were the most effective. Transport studies with radiolabeled glycine betaine showed that S. salinus M19-40 increases the pool size of this osmolyte in a fashion that is sensitively tied to the prevalent salinity of the growth medium. It was amassed in salt-stressed cells in unmodified form and suppressed the synthesis of ectoine. In conclusion, the data presented here allow us to derive a genome-scale picture of the cellular adjustment strategy of a species that represents an environmentally abundant group of ecophysiologically important halophilic microorganisms.
Collapse
Affiliation(s)
- María J León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
40
|
Estevez‐Canales M, Pinto D, Coradin T, Laberty‐Robert C, Esteve‐Núñez A. Silica immobilization of Geobacter sulfurreducens for constructing ready-to-use artificial bioelectrodes. Microb Biotechnol 2018; 11:39-49. [PMID: 28401700 PMCID: PMC5743811 DOI: 10.1111/1751-7915.12561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/02/2022] Open
Abstract
Microbial electrochemical technologies (METs) rely on the control of interactions between microorganisms and electronic devices, enabling to transform chemical energy into electricity. We report a new approach to construct ready-to-use artificial bioelectrodes by immobilizing Geobacter sulfurreducens cells in composite materials associating silica gel and carbon felt fibres. Viability test confirmed that the majority of bacteria (ca. 70 ± 5%) survived the encapsulation process in silica and that cell density did not increase in 96 h. The double entrapment within the silica-carbon composite prevented bacterial release from the electrode but allowed a suitable mass transport (ca. 5 min after electron donor pulse), making the electrochemical characterization of the system possible. The artificial bioelectrodes were evaluated in three-electrode reactors and the maximum current displayed was ca. 220 and 150 μA cm-3 using acetate and lactate as electron donors respectively. Cyclic voltammetry of acetate-fed bioelectrodes revealed a sigmoidal catalytic oxidation wave, typical of more advanced-stage biofilms. The presence of G. sulfurreducens within composites was ascertained by SEM analysis, suggesting that only part of the bacterial population was in direct contact with the carbon fibres. Preliminary analyses of the transcriptomic response of immobilized G. sulfurreducens enlightened that encapsulation mainly induces an osmotic stress to the cells. Therefore, ready-to-use artificial bioelectrodes represent a versatile time- and cost-saving strategy for microbial electrochemical systems.
Collapse
Affiliation(s)
| | - David Pinto
- Sorbonne UniversitésUPMC Univ. Paris 06CNRSCollège de FranceLaboratoire de Chimie de la Matière Condensée de Paris (LCMCP)4 place JussieuF‐75005ParisFrance
| | - Thibaud Coradin
- Sorbonne UniversitésUPMC Univ. Paris 06CNRSCollège de FranceLaboratoire de Chimie de la Matière Condensée de Paris (LCMCP)4 place JussieuF‐75005ParisFrance
| | - Christel Laberty‐Robert
- Sorbonne UniversitésUPMC Univ. Paris 06CNRSCollège de FranceLaboratoire de Chimie de la Matière Condensée de Paris (LCMCP)4 place JussieuF‐75005ParisFrance
| | - Abraham Esteve‐Núñez
- Department of Chemical EngineeringUniversity of AlcaláAlcalá de HenaresMadridSpain
- IMDEA Water InstituteAlcalá de HenaresSpain
| |
Collapse
|
41
|
Kim NH, Cho TJ, Rhee MS. Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:1-47. [PMID: 29050664 DOI: 10.1016/bs.aambs.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Addition of salt or salt-containing water to food is one of the oldest and most effective preservation methods in history; indeed, salt-cured foods are generally recognized as microbiologically safe due to their high salinity. However, a number of microbiological risks remain. The microbiological hazards and risks associated with salt-cured foods must be addressed more in-depth as they are likely to be underestimated by previous studies. This review examined a number of scientific reports and articles about the microbiological safety of salt-cured foods, which included salted, brined, pickled, and/or marinated vegetables, meat, and seafood. The following subjects are covered in order: (1) clinical cases and outbreaks attributed to salt-cured foods; (2) the prevalence of foodborne pathogens in such foods; (3) the molecular, physiological, and virulent responses of the pathogens to the presence of NaCl in both laboratory media and food matrices; (4) the survival and fate of microorganisms in salt-cured foods (in the presence/absence of additional processes); and (5) the interaction between NaCl and other stressors in food processes (e.g., acidification, antimicrobials, drying, and heating). The review provides a comprehensive overview of potentially hazardous pathogens associated with salt-cured foods and suggests further research into effective intervention techniques that will reduce their levels in the food chain.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Hoffmann T, Bremer E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol Chem 2017; 398:193-214. [PMID: 27935846 DOI: 10.1515/hsz-2016-0265] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.
Collapse
|
43
|
Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp. J Bacteriol 2016; 199:JB.00465-16. [PMID: 27795320 DOI: 10.1128/jb.00465-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/05/2016] [Indexed: 02/03/2023] Open
Abstract
Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stress-bearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth. IMPORTANCE Polar growth is an intricate manner of growth for accomplishing a complicated morphology, employed by a wide range of organisms across the kingdoms of life. The tip extension of Streptomyces hyphae is one of the most pronounced examples of polar growth among bacteria. The expansion of the cell wall by tip extension is thought to be facilitated by the turgor pressure, but it was unknown how external osmotic change influences Streptomyces tip growth. We report here that severe hyperosmotic stress causes cessation of growth, followed by reprogramming of cell polarity and rearrangement of growth zones to promote lateral hyphal branching. This phenomenon may represent a strategy of hyphal organisms to avoid osmotic stress encountered by the growing hyphal tip.
Collapse
|
44
|
Affiliation(s)
- Anuradha Janakiraman
- a Department of Biology , City College of CUNY , New York , NY , USA.,b The Graduate Center of CUNY , New York , NY , USA
| | - Cammie F Lesser
- c Department of Medicine, Division of Infectious Diseases , Massachusetts General Hospital , Cambridge , MA , USA.,d Department of Microbiology and Immunobiology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
45
|
Polydiglycosylphosphate Transferase PdtA (SCO2578) of Streptomyces coelicolor A3(2) Is Crucial for Proper Sporulation and Apical Tip Extension under Stress Conditions. Appl Environ Microbiol 2016; 82:5661-72. [PMID: 27422828 DOI: 10.1128/aem.01425-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.
Collapse
|
46
|
Medeiros JD, Cantão ME, Cesar DE, Nicolás MF, Diniz CG, Silva VL, Vasconcelos ATRD, Coelho CM. Comparative metagenome of a stream impacted by the urbanization phenomenon. Braz J Microbiol 2016; 47:835-845. [PMID: 27522532 PMCID: PMC5052392 DOI: 10.1016/j.bjm.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Rivers and streams are important reservoirs of freshwater for human consumption. These ecosystems are threatened by increasing urbanization, because raw sewage discharged into them alters their nutrient content and may affect the composition of their microbial community. In the present study, we investigate the taxonomic and functional profile of the microbial community in an urban lotic environment. Samples of running water were collected at two points in the São Pedro stream: an upstream preserved and non-urbanized area, and a polluted urbanized area with discharged sewage. The metagenomic DNA was sequenced by pyrosequencing. Differences were observed in the community composition at the two sites. The non-urbanized area was overrepresented by genera of ubiquitous microbes that act in the maintenance of environments. In contrast, the urbanized metagenome was rich in genera pathogenic to humans. The functional profile indicated that the microbes act on the metabolism of methane, nitrogen and sulfur, especially in the urbanized area. It was also found that virulence/defense (antibiotic resistance and metal resistance) and stress response-related genes were disseminated in the urbanized environment. The structure of the microbial community was altered by uncontrolled anthropic interference, highlighting the selective pressure imposed by high loads of urban sewage discharged into freshwater environments.
Collapse
Affiliation(s)
- Julliane Dutra Medeiros
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil.
| | | | | | | | - Cláudio Galuppo Diniz
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | - Vânia Lúcia Silva
- Universidade Federal de Juiz de Fora, Instituto de Ciências Biológicas, Juiz de Fora, MG, Brazil
| | | | - Cíntia Marques Coelho
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil
| |
Collapse
|
47
|
Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics. PLoS One 2015; 10:e0135065. [PMID: 26287734 PMCID: PMC4545795 DOI: 10.1371/journal.pone.0135065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt stress. Changes of extracellular protein profiles from Tistlia consotensis in conditions of low and high salinities were monitored by proteogenomics using a bacterial draft genome. At low salinity, we detected greater amounts of the HpnM protein which is involved in the biosynthesis of hopanoids. This may represent a novel, and previously unreported, strategy by halotolerant microorganisms to prevent the entry of water into the cell under conditions of low salinity. At high salinity, proteins associated with osmosensing, exclusion of Na+ and transport of compatible solutes, such as glycine betaine or proline are abundant. We also found that, probably in response to the high salt concentration, T. consotensis activated the synthesis of flagella and triggered a chemotactic response neither of which were observed at the salt concentration which is optimal for growth. Our study demonstrates that the exoproteome is an appropriate indicator of adaptive response of T. consotensis to changes in salinity because it allowed the identification of key proteins within its osmoadaptive mechanism that had not previously been detected in its cell proteome.
Collapse
|
48
|
Tatebayashi K, Yamamoto K, Nagoya M, Takayama T, Nishimura A, Sakurai M, Momma T, Saito H. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat Commun 2015; 6:6975. [PMID: 25898136 PMCID: PMC4411306 DOI: 10.1038/ncomms7975] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 11/09/2022] Open
Abstract
The yeast high osmolarity glycerol (HOG) pathway activates the Hog1 MAP kinase, which coordinates adaptation to high osmolarity conditions. Here we demonstrate that the four-transmembrane (TM) domain protein Sho1 is an osmosensor in the HKR1 sub-branch of the HOG pathway. Crosslinking studies indicate that Sho1 forms planar oligomers of the dimers-of-trimers architecture by dimerizing at the TM1/TM4 interface and trimerizing at the TM2/TM3 interface. High external osmolarity induces structural changes in the Sho1 TM domains and Sho1 binding to the cytoplasmic adaptor protein Ste50, which leads to Hog1 activation. Besides its osmosensing function, the Sho1 oligomer serves as a scaffold. By binding to the TM proteins Opy2 and Hkr1 at the TM1/TM4 and TM2/TM3 interface, respectively, Sho1 forms a multi-component signalling complex that is essential for Hog1 activation. Our results illuminate how the four TM domains of Sho1 dictate the oligomer structure as well as its osmosensing and scaffolding functions.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Miho Nagoya
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Megumi Sakurai
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Momma
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Affiliation(s)
- Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
50
|
Zhou A, Hillesland KL, He Z, Schackwitz W, Tu Q, Zane GM, Ma Q, Qu Y, Stahl DA, Wall JD, Hazen TC, Fields MW, Arkin AP, Zhou J. Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris. ISME JOURNAL 2015; 9:2360-72. [PMID: 25848870 DOI: 10.1038/ismej.2015.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/07/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
Collapse
Affiliation(s)
- Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | | | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Wendy Schackwitz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Grant M Zane
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Qiao Ma
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yuanyuan Qu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Judy D Wall
- Departments of Biochemistry and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Matthew W Fields
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|