1
|
Pinzón Martín S, Mecinović J. Selenalysine as a Chemical Tool for Probing Histone Post-Translational Modifications. Bioconjug Chem 2025; 36:510-520. [PMID: 40040526 DOI: 10.1021/acs.bioconjchem.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Post-translational modifications (PTMs) on histones play a crucial role in determining the structure and function of chromatin, thereby regulating the eukaryotic gene expression. Histone lysine methylation and acetylation are among the most widespread and biomedically important PTMs, with new chemical tools for their examination in high demand. Here, we report the first use of γ-selenalysine as an efficient lysine mimic for enzymatic methylation, acetylation, and deacetylation reactions catalyzed by histone lysine methyltransferases, acetyltransferases, and a deacetylase. We also show that easily accessible selenocysteine and cysteine residues can undergo chemo- and site-selective alkylation reactions to generate both unmodified and modified γ-selenalysine and related γ-thialysine residues in histone peptides. This dual-modification strategy enables the site-specific incorporation of two distinct functionalities into peptides, mimicking lysine post-translational modifications commonly found on histones. Our research presents a novel approach in which selenocysteine serves as a unique handle for the chemoselective introduction of selenalysine, along with its methylated and acetylated analogues. These tools are designed to facilitate the study of epigenetic proteins that are important for human health and disease.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
2
|
Das T, Das S, Das D. In situ fabricated gold nanostars on hydrogel beads as photo-oxidase mimics for rapid and sustainable POCT of uric acid. J Mater Chem B 2025; 13:1079-1088. [PMID: 39641641 DOI: 10.1039/d4tb02096k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Synthetic enzyme mimics surpass their natural counterparts in terms of stability, efficiency, and cost-effectiveness, making them highly valuable for catalytic applications. Gold nanomaterials, particularly gold nanostars, have emerged as promising enzyme mimetic nanocatalysts due to their enhanced light interaction and superior catalytic efficiency. In this study, gold nanostars grown in situ on the surface of core-shell hydrogel beads exhibited specific oxidase-like activity when exposed to light. Photoexcitation of gold nanostars generates singlet oxygen through the interaction of positive holes and superoxide radicals, resulting in photo-oxidase-like activity. Attaching the gold nanostars to the hydrogel bead surface prevented catalytic activity loss caused by agglomeration, resulting in a marked improvement in catalytic stability. This stability is evident from the sustained catalytic activity of the hydrogel bead-embedded gold nanostars, even after 60 days of prolonged incubation in an aqueous medium, and their strong catalytic performance across multiple reaction cycles. Leveraging this photo-oxidase-like activity, a point-of-care testing (POCT) setup is developed for highly sensitive uric acid detection. The system achieved a remarkable detection limit of 0.9 μM and demonstrated excellent accuracy in blood serum and urine sample analyses. Furthermore, the integration of smartphone technology facilitated rapid and convenient on-site testing, bridging the gap between laboratory settings and real-world applications. This approach offers a practical and sustainable solution for efficient and accurate uric acid monitoring in diverse settings.
Collapse
Affiliation(s)
- Tanushree Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India.
| | - Saurav Das
- Department of Chemistry, Gurucharan College, Cachar, Silchar, Assam, 788004, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India.
| |
Collapse
|
3
|
Kudalkar GP, Tiwari VK, Berkowitz DB. Exploiting Archaeal/Thermostable Enzymes in Synthetic Chemistry: Back to the Future? ChemCatChem 2024; 16:e202400835. [PMID: 40417414 PMCID: PMC12101612 DOI: 10.1002/cctc.202400835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 05/27/2025]
Abstract
Billions of years of evolution have led to the selection of (hyper)thermophiles capable of flourishing at elevated temperatures. The corresponding native (hyper)thermophilic enzymes retain their tertiary and quaternary structures at near-boiling water temperatures and naturally retain catalytically competent conformational dynamics under these conditions. And yet, while hyper/thermophilic enzymes offer special opportunities in biocatalysis and in hybrid bio/chemocatalytic approaches to modern synthesis in both academia and industry, these enzymes remain underexplored in biocatalysis. Among the strategic advantages that can be leveraged in running biocatalytic transformations at higher temperatures are included more favorable kinetics, removal of volatile byproducts to drive reactions forward, improved substrate solubility and product separation, and accelerated stereodynamics for dynamic kinetic resolutions. These topics are discussed and illustrated with contemporary examples of note, in sections organized by stratagem. Finally, the reader is alerted in particular to archaeal enzymes that have proven useful in non-natural synthetic chemistry ventures, and at the same time is referred to a rich area of archaea whose genomes have been sequenced but whose enzymatic activities of interest have not yet been mined. Though hyperthermophilic archaea are among the most ancient of organisms, their enzymes may hold the key to many future innovations in biocatalytic chemistry - perhaps we really do need to go 'back to the future'.
Collapse
Affiliation(s)
- Gaurav P Kudalkar
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304 USA
| |
Collapse
|
4
|
Tronnet A, Salas-Ambrosio P, Roman R, Bravo-Anaya LM, Ayala M, Bonduelle C. Star-Like Polypeptides as Simplified Analogues of Horseradish Peroxidase (HRP) Metalloenzymes. Macromol Biosci 2024; 24:e2400155. [PMID: 39122460 DOI: 10.1002/mabi.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Indexed: 08/12/2024]
Abstract
Peroxidases, like horseradish peroxidase (HRP), are heme metalloenzymes that are powerful biocatalysts for various oxidation reactions. By using simple grafting-from approach, ring-opening polymerization (ROP), and manganese porphyrins, star-shaped polypeptides analogues of HRP capable of catalyzing oxidation reactions with H2O2 is successfully prepared. Like their protein model, these simplified analogues show interesting Michaelis-Menten constant (KM) in the mM range for the oxidant. Interestingly, the polymer structures are more resistant to denaturation (heat, proteolysis and oxidant concentration) than HRP, opening up interesting prospects for their use in catalysis or in biosensing devices.
Collapse
Affiliation(s)
- Antoine Tronnet
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
- CNRS, LCC (Laboratoire de Chimie de Coordination (UPR8241)), University of Toulouse, 205 route de Narbonne, Toulouse, F-31077, France
| | - Pedro Salas-Ambrosio
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Rosa Roman
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | | | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | - Colin Bonduelle
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| |
Collapse
|
5
|
Hernández-Fernández J, Tiempos-Flores N, Ordóñez M, Rivas-Galindo V, López-Cortina S, García-Alvarez KG, Hernández-Fernández E. Microwave-Assisted Hydrolysis of Ethyl Azolylacetates and Cinnamates with K 2CO 3: Synthesis of Potassium Carboxylates. ACS OMEGA 2024; 9:40783-40789. [PMID: 39371973 PMCID: PMC11447747 DOI: 10.1021/acsomega.4c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
In this study, the hydrolysis of ethyl azolylacetates and ethyl cinnamates using K2CO3/ethanol under microwave irradiation was developed. For this purpose, ethyl azolylacetates were first synthesized by nucleophilic substitution between the corresponding azole and ethyl bromoacetate under sonication at 50 °C for 3 h, yielding derivatives with 10-92% chemical yields, while ethyl cinnamates were obtained by a microwave-assisted Horner-Wadsworth-Emmons (HWE) reaction of triethyl phosphonoacetate with a variety of aryl aldehydes at 140 °C for 20 min, yielding derivatives with moderate to high yields (67-98%). Initially, the optimization of the hydrolysis reaction was performed using ethyl pyrazolylacetate as a model starting material while varying the temperature, time, and base equivalents; the best results were achieved by carrying out the reaction at 180 °C for 20 min with 3.0 eq of K2CO3. This simple and greener method facilitated the synthesis of potassium carboxylates in moderate to high yields, 80-98% for azolyl derivatives and 73-98% for cinnamate derivatives. The structures of all potassium carboxylates were confirmed by FTIR, 1H, 13C NMR, and HRMS.
Collapse
Affiliation(s)
- Jorge Hernández-Fernández
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Norma Tiempos-Flores
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Mario Ordóñez
- Centro
de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209, México
| | - Verónica
M. Rivas-Galindo
- Facultad
de Medicina, Universidad Autónoma
de Nuevo León, Fco. I. Madero s/n, Mitras Centro, Monterrey, Nuevo León 64460, México
| | - Susana López-Cortina
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Katia Guadalupe García-Alvarez
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| | - Eugenio Hernández-Fernández
- Facultad
de Ciencias Químicas, Universidad
Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San
Nicolás de los Garza, Nuevo León 66455, México
| |
Collapse
|
6
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
7
|
Xiang X, Zhu E, Xiong D, Wen Y, Xing Y, Yue L, He S, Han N, Huang Z. Improving the Thermostability of Thermomyces lanuginosus Lipase by Restricting the Flexibility of N-Terminus and C-Terminus Simultaneously via the 25-Loop Substitutions. Int J Mol Sci 2023; 24:16562. [PMID: 38068886 PMCID: PMC10706272 DOI: 10.3390/ijms242316562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Lipases are catalysts widely applied in industrial fields. To sustain the harsh treatments in industries, optimizing lipase activities and thermal stability is necessary to reduce production loss. (2) The thermostability of Thermomyces lanuginosus lipase (TLL) was evaluated via B-factor analysis and consensus-sequence substitutions. Five single-point variants (K24S, D27N, D27R, P29S, and A30P) with improved thermostability were constructed via site-directed mutagenesis. (3) The optimal reaction temperatures of all the five variants displayed 5 °C improvement compared with TLL. Four variants, except D27N, showed enhanced residual activities at 80 °C. The melting temperatures of three variants (D27R, P29S, and A30P) were significantly increased. The molecular dynamics simulations indicated that the 25-loop (residues 24-30) in the N-terminus of the five variants generated more hydrogen bonds with surrounding amino acids; hydrogen bond pair D254-I255 preserved in the C-terminus of the variants also contributes to the improved thermostability. Furthermore, the newly formed salt-bridge interaction (R27…E56) in D27R was identified as a crucial determinant for thermostability. (4) Our study discovered that substituting residues from the 25-loop will enhance the stability of the N-terminus and C-terminus simultaneously, restrict the most flexible regions of TLL, and result in improved thermostability.
Collapse
Affiliation(s)
- Xia Xiang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Enheng Zhu
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Diao Xiong
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Yin Wen
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Yu Xing
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Lirong Yue
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Shuang He
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Somsri S, Suwankaisorn B, Yomthong K, Srisuwanno W, Klinyod S, Kuhn A, Wattanakit C. Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. Chemistry 2023; 29:e202302054. [PMID: 37555292 DOI: 10.1002/chem.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Enantioselective catalysis is of crucial importance in modern chemistry and pharmaceutical science. Although various concepts have been used for the development of enantioselective catalysts to obtain highly pure chiral compounds, most of them are based on homogeneous catalytic systems. Recently, we successfully developed nanostructured metal layers imprinted with chiral information, which were applied as electrocatalysts for the enantioselective synthesis of chiral model compounds. However, so far such materials have not been employed as heterogeneous catalysts for the enantioselective synthesis of real pharmaceutical products. In this contribution, we report the asymmetric synthesis of chiral pharmaceuticals (CPs) with chiral imprinted Pt-Ir surfaces as a simple hydrogenation catalyst. By fine-tuning the experimental parameters, a very high enantioselectivity (up to 95 % enantiomeric excess) with good catalyst stability can be achieved. The designed materials were also successfully used as catalytically active stationary phases for the continuous asymmetric flow synthesis of pharmaceutical compounds. This illustrates the possibility of producing real chiral pharmaceuticals at such nanostructured metal surfaces for the first time.
Collapse
Affiliation(s)
- Supattra Somsri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Krissanapat Yomthong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
9
|
Chaturvedi SS, Bím D, Christov CZ, Alexandrova AN. From random to rational: improving enzyme design through electric fields, second coordination sphere interactions, and conformational dynamics. Chem Sci 2023; 14:10997-11011. [PMID: 37860658 PMCID: PMC10583697 DOI: 10.1039/d3sc02982d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Enzymes are versatile and efficient biological catalysts that drive numerous cellular processes, motivating the development of enzyme design approaches to tailor catalysts for diverse applications. In this perspective, we investigate the unique properties of natural, evolved, and designed enzymes, recognizing their strengths and shortcomings. We highlight the challenges and limitations of current enzyme design protocols, with a particular focus on their limited consideration of long-range electrostatic and dynamic effects. We then delve deeper into the impact of the protein environment on enzyme catalysis and explore the roles of preorganized electric fields, second coordination sphere interactions, and protein dynamics for enzyme function. Furthermore, we present several case studies illustrating successful enzyme-design efforts incorporating enzyme strategies mentioned above to achieve improved catalytic properties. Finally, we envision the future of enzyme design research, spotlighting the challenges yet to be overcome and the synergy of intrinsic electric fields, second coordination sphere interactions, and conformational dynamics to push the state-of-the-art boundaries.
Collapse
Affiliation(s)
- Shobhit S Chaturvedi
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Daniel Bím
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| | - Christo Z Christov
- Department of Chemistry, Michigan Technological University Houghton Michigan 49931 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles California 90095 USA
| |
Collapse
|
10
|
Ali MY, Liaqat F, Khazi MI, Sethupathy S, Zhu D. Utilization of glycosyltransferases as a seamless tool for synthesis and modification of the oligosaccharides-A review. Int J Biol Macromol 2023; 249:125916. [PMID: 37527764 DOI: 10.1016/j.ijbiomac.2023.125916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Glycosyltransferases (GTs) catalyze the transfer of active monosaccharide donors to carbohydrates to create a wide range of oligosaccharide structures. GTs display strong regioselectivity and stereoselectivity in producing glycosidic bonds, making them extremely valuable in the in vitro synthesis of oligosaccharides. The synthesis of oligosaccharides by GTs often gives high yields; however, the enzyme activity may experience product inhibition. Additionally, the higher cost of nucleotide sugars limits the usage of GTs for oligosaccharide synthesis. In this review, we comprehensively discussed the structure and mechanism of GTs based on recent literature and the CAZY website data. To provide innovative ideas for the functional studies of GTs, we summarized several remarkable characteristics of GTs, including folding, substrate specificity, regioselectivity, donor sugar nucleotides, catalytic reversibility, and differences between GTs and GHs. In particular, we highlighted the recent advancements in multi-enzyme cascade reactions and co-immobilization of GTs, focusing on overcoming problems with product inhibition and cost issues. Finally, we presented various types of GT that have been successfully used for oligosaccharide synthesis. We concluded that there is still an opportunity for improvement in enzymatically produced oligosaccharide yield, and future research should focus on improving the yield and reducing the production cost.
Collapse
Affiliation(s)
- Mohamad Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Romero EO, Saucedo AT, Hernández-Meléndez JR, Yang D, Chakrabarty S, Narayan ARH. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS AU 2023; 3:2073-2085. [PMID: 37654599 PMCID: PMC10466347 DOI: 10.1021/jacsau.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023]
Abstract
Biocatalysis is becoming an increasingly impactful method in contemporary synthetic chemistry for target molecule synthesis. The selectivity imparted by enzymes has been leveraged to complete previously intractable chemical transformations and improve synthetic routes toward complex molecules. However, the implementation of biocatalysis in mainstream organic chemistry has been gradual to this point. This is partly due to a set of historical and technological barriers that have prevented chemists from using biocatalysis as a synthetic tool with utility that parallels alternative modes of catalysis. In this Perspective, we discuss these barriers and how they have hindered the adoption of enzyme catalysts into synthetic strategies. We also summarize tools and resources that already enable organic chemists to use biocatalysts. Furthermore, we discuss ways to further lower the barriers for the adoption of biocatalysis by the broader synthetic organic chemistry community through the dissemination of resources, demystifying biocatalytic reactions, and increasing collaboration across the field.
Collapse
Affiliation(s)
- Evan O. Romero
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony T. Saucedo
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - José R. Hernández-Meléndez
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Di Yang
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suman Chakrabarty
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Abdel-Hady GN, Tajima T, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. A novel salt- and organic solvent-tolerant phosphite dehydrogenase from Cyanothece sp. ATCC 51142. Front Bioeng Biotechnol 2023; 11:1255582. [PMID: 37662428 PMCID: PMC10473253 DOI: 10.3389/fbioe.2023.1255582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Phosphite dehydrogenase (PtxD) is a promising enzyme for NAD(P)H regeneration. To expand the usability of PtxD, we cloned, expressed, and analyzed PtxD from the marine cyanobacterium Cyanothece sp. ATCC 51142 (Ct-PtxD). Ct-PtxD exhibited maximum activity at pH 9.0°C and 50°C and high stability over a wide pH range of 6.0-10.0. Compared to previously reported PtxDs, Ct-PtxD showed increased resistance to salt ions such as Na+, K+, and NH4 +. It also exhibited high tolerance to organic solvents such as ethanol, dimethylformamide, and methanol when bound to its preferred cofactor, NAD+. Remarkably, these organic solvents enhanced the Ct-PtxD activity while inhibiting the PtxD activity of Ralstonia sp. 4506 (Rs-PtxD) at concentrations ranging from 10% to 30%. Molecular electrostatic potential analysis showed that the NAD+-binding site of Ct-PtxD was rich in positively charged residues, which may attract the negatively charged pyrophosphate group of NAD+ under high-salt conditions. Amino acid composition analysis revealed that Ct-PtxD contained fewer hydrophobic amino acids than other PtxD enzymes, which reduced the hydrophobicity and increased the hydration of protein surface under low water activity. We also demonstrated that the NADH regeneration system using Ct-PtxD is useful for the coupled chiral conversion of trimethylpyruvic acid into L-tert-leucine using leucine dehydrogenase under high ammonium conditions, which is less supported by the Rs-PtxD enzyme. These results imply that Ct-PtxD might be a potential candidate for NAD(P)H regeneration in industrial applications under the reaction conditions containing salt and organic solvent.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takahisa Tajima
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
14
|
Guo H, Sun N, Guo J, Zhou TP, Tang L, Zhang W, Deng Y, Liao RZ, Wu Y, Wu G, Zhong F. Expanding the Promiscuity of a Copper-Dependent Oxidase for Enantioselective Cross-Coupling of Indoles. Angew Chem Int Ed Engl 2023; 62:e202219034. [PMID: 36789864 DOI: 10.1002/anie.202219034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.
Collapse
Affiliation(s)
- Huan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Juan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Wentao Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yaming Deng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
15
|
Duan X, Cui D, Wang Z, Zheng D, Jiang L, Huang WY, Jia YX, Xu J. A Photoenzymatic Strategy for Radical-Mediated Stereoselective Hydroalkylation with Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202214135. [PMID: 36478374 DOI: 10.1002/anie.202214135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Carbene insertion reactions initiated with diazo compounds have been widely used to develop unnatural enzymatic reactions. However, alternative functionalization of diazo compounds in enzymatic processes has been unexploited. Herein, we describe a photoenzymatic strategy for radical-mediated stereoselective hydroalkylation with diazo compounds. This method generates carbon-centered radicals through an ene reductase catalyzed photoinduced electron transfer process from diazo compounds, enabling the synthesis of γ-stereogenic carbonyl compounds in good yields and stereoselectivities. This study further expands the possible reaction patterns in photo-biocatalysis and offers a new approach to solving the selectivity challenges of radical-mediated reactions.
Collapse
Affiliation(s)
- Xinyu Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dong Cui
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiguo Wang
- Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Dannan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Linye Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wen-Yu Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yi-Xia Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
17
|
Zhang N, Wu C. Tailoring Protein-Polymer Conjugates as Efficient Artificial Enzymes for Aqueous Asymmetric Aldol Reactions. ACS Synth Biol 2022; 11:3797-3804. [PMID: 36343337 DOI: 10.1021/acssynbio.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Artificial enzymes are becoming a powerful toolbox for selective organic syntheses. Herein, we first propose an advanced artificial enzyme by polymeric modularity as an efficient aldolase mimic for aqueous asymmetric aldol reactions. Based on an in-depth understanding of the aldolase reaction mechanism and our previous work, we demonstrate the modular design of protein-polymer conjugates by co-incorporating l-proline and styrene onto a noncatalytic protein scaffold with a high degree of controllability. The tailored conjugates exhibited remarkable catalytic performance toward the aqueous asymmetric aldol reaction of p-nitrobenzaldehyde and cyclohexanone, achieving 94% conversion and excellent selectivity (95/5 diastereoselectivity, 98% enantiomeric excess). In addition, this artificial enzyme showed high tolerance against extreme conditions (e.g., wide pH range, high temperature) and could be reused for more than four times without significant loss of reactivity. Experiments have shown that the artificial enzyme displayed broad specificity for various aldehydes.
Collapse
Affiliation(s)
- Ningning Zhang
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
18
|
Abstract
Many enzymes possess high catalytic efficiency and selectivity that far surpass classical organic or organometallic catalysts. However, the initial starting enzyme for a given transformation does not always possess the right properties needed for broad utilization. Searching in genome/protein sequence libraries for homologs, aided with powerful bioinformatic tools developed in recent years, provides an avenue to identify superior biocatalysts. Herein, we highlight several case studies to illustrate the power of this concept. A brief discussion on its complementarity with contemporary approaches in protein engineering (such as directed evolution) and possible future developments is also provided.
Collapse
Affiliation(s)
- Yanlong Jiang
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX,77005, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX,77005, USA
- Lead Contact
| |
Collapse
|
19
|
Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis. Nat Commun 2022; 13:5242. [PMID: 36068220 PMCID: PMC9448781 DOI: 10.1038/s41467-022-32789-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering. Efficient engineering of enzymes for expanded substrate scope is currently challenging. Here, the authors develop simple principles of how to design and interpret Substrate Multiplexed Screening assays to guide protein engineering to enable activity improvements with simultaneously with multiple substrates.
Collapse
|
20
|
Glucose oxidase converted into a general sugar-oxidase. Sci Rep 2022; 12:10716. [PMID: 35739181 PMCID: PMC9226012 DOI: 10.1038/s41598-022-14957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Entrapment of glucose oxidase (GOx) within metallic gold converts this widely used enzyme into a general saccharide oxidase. The following sugar molecules were oxidized by the entrapped enzyme (in addition to D-glucose): fructose, xylose, L-glucose, glucose-6-phosphate, sucrose, lactose, methylglucoside, and the tri-saccharide raffinose. With the exception of raffinose, none of these sugars have a natural specific oxidase. The origin of this generalization of activity is attributed to the strong protein-gold 3D interactions and to the strong interactions of the co-entrapped CTAB with both the gold, and the protein. It is proposed that these interactions induce conformational changes in the channel leading to the active site, which is located at the interface between the two units of the dimeric GOx protein. The observations are compatible with affecting the specific conformation change of pulling apart and opening this gate-keeper, rendering the active site accessible to a variety of substrates. The entrapment methodology was also found to increase the thermal stability of GOx up to 100 °C and to allow its convenient reuse, two features of practical importance.
Collapse
|
21
|
Singh SK, Mishra N, Kumar S, Jaiswal MK, Tiwari VK. Growing Impact of Carbohydrate‐Based Organocatalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202201314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sumit K. Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 INDIA
| | - Nidhi Mishra
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 INDIA
| | - Sunil Kumar
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 INDIA
| | - Manoj K. Jaiswal
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 INDIA
| | - Vinod K. Tiwari
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 INDIA
| |
Collapse
|
22
|
Woodley JM. Ensuring the Sustainability of Biocatalysis. CHEMSUSCHEM 2022; 15:e202102683. [PMID: 35084801 DOI: 10.1002/cssc.202102683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Biocatalysis offers many attractive features for the synthetic chemist. In many cases, the high selectivity and ability to tailor specific enzyme features via protein engineering already make it the catalyst of choice. From the perspective of sustainability, several features such as catalysis under mild conditions and use of a renewable and biodegradable catalyst also look attractive. Nevertheless, to be sustainable at a larger scale it will be essential to develop processes operating at far higher concentrations of product, and which make better use of the enzyme via improved stability. In this Concept, it is argued that a particular emphasis on these specific metrics is of particular importance for the future implementation of biocatalysis in industry, at a level that fulfills its true potential.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
23
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
24
|
Zhang N, Sun Z, Wu C. Artificial Enzymes Combining Proteins with Proline Polymers for Asymmetric Aldol Reactions in Water. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ningning Zhang
- Institute of Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Zhiyong Sun
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
25
|
Breger JC, Ellis GA, Walper SA, Susumu K, Medintz IL. Implementing Multi-Enzyme Biocatalytic Systems Using Nanoparticle Scaffolds. Methods Mol Biol 2022; 2487:227-262. [PMID: 35687240 DOI: 10.1007/978-1-0716-2269-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interest in multi-enzyme synthesis outside of cells (in vitro) is becoming far more prevalent as the field of cell-free synthetic biology grows exponentially. Such synthesis would allow for complex chemical transformations based on the exquisite specificity of enzymes in a "greener" manner as compared to organic chemical transformations. Here, we describe how nanoparticles, and in this specific case-semiconductor quantum dots, can be used to both stabilize enzymes and further allow them to self-assemble into nanocomplexes that facilitate high-efficiency channeling phenomena. Pertinent protocol information is provided on enzyme expression, choice of nanoparticulate material, confirmation of enzyme attachment to nanoparticles, assay format and tracking, data analysis, and optimization of assay formats to draw the best analytical information from the underlying processes.
Collapse
Affiliation(s)
- Joyce C Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, Washington, DC, USA.
| |
Collapse
|
26
|
Wang L, Lou Y, Xu W, Chen Z, Xu J, Wu Q. Biocatalytic Site-Selective Hydrogen Isotope Exchange of Unsaturated Fragments with D2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
27
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
28
|
Glueck DS. Intramolecular attack on coordinated nitriles: metallacycle intermediates in catalytic hydration and beyond. Dalton Trans 2021; 50:15953-15960. [PMID: 34643205 DOI: 10.1039/d1dt02795f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration of nitriles is catalyzed by the enzyme nitrile hydratase, with iron or cobalt active sites, and by a variety of synthetic metal complexes. This Perspective focuses on parallels between the reaction mechanism of the enzyme and a class of particularly active catalysts bearing secondary phosphine oxide (SPO) ligands. In both cases, the key catalytic step was proposed to be intramolecular attack on a coordinated nitrile, with either an S-OH or S-O- (enzyme) or a P-OH (synthetic) nucleophile. Attack of water on the heteroatom (S or P) in the resulting metallacycle and proton transfer yields the amide and regenerates the catalyst. Evidence for this mechanism, its relevance to the formation of related metallacycles, and its potential for design of more active catalysts for nitrile hydration is summarized.
Collapse
Affiliation(s)
- David S Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
29
|
Assavapanumat S, Butcha S, Ittisanronnachai S, Kuhn A, Wattanakit C. Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Pt-Ir Films Supported on Ni Foam. Chem Asian J 2021; 16:3345-3353. [PMID: 34416087 DOI: 10.1002/asia.202100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/11/2022]
Abstract
The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt-Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Sopon Butcha
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Somlak Ittisanronnachai
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| |
Collapse
|
30
|
Xu J, Lou Y, Wang L, Wang Z, Xu W, Ma W, Chen Z, Chen X, Wu Q. Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Wenqian Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaoyang Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
31
|
Galanie S, Entwistle D, Lalonde J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat Prod Rep 2021; 37:1122-1143. [PMID: 32364202 DOI: 10.1039/c9np00071b] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2000 to 2020 Natural products and their derivatives are commercially important medicines, agrochemicals, flavors, fragrances, and food ingredients. Industrial strategies to produce these structurally complex molecules encompass varied combinations of chemical synthesis, biocatalysis, and extraction from natural sources. Interest in engineering natural product biosynthesis began with the advent of genetic tools for pathway discovery. Genes and strains can now readily be synthesized, mutated, recombined, and sequenced. Enzyme engineering has succeeded commercially due to the development of genetic methods, analytical technologies, and machine learning algorithms. Today, engineered biosynthetic enzymes from organisms spanning the tree of life are used industrially to produce diverse molecules. These biocatalytic processes include single enzymatic steps, multienzyme cascades, and engineered native and heterologous microbial strains. This review will describe how biosynthetic enzymes have been engineered to enable commercial and near-commercial syntheses of natural products and their analogs.
Collapse
Affiliation(s)
- Stephanie Galanie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | - David Entwistle
- Process Chemistry, Codexis, Inc., Redwood City, California, USA
| | - James Lalonde
- Microbial Digital Genome Engineering, Inscripta, Inc., Pleasanton, California, USA
| |
Collapse
|
32
|
Baruch-Shpigler Y, Avnir D. Entrapment of glucose oxidase within gold converts it to a general monosaccharide-oxidase. Sci Rep 2021; 11:10737. [PMID: 34031493 PMCID: PMC8144553 DOI: 10.1038/s41598-021-90242-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
We report that entrapping glucose oxidase (GOx) within metallic gold, expands its activity to become an oxidase for monosaccharides that do not have a natural enzyme with that activity-fructose and xylose-and that this entrapment also removes the enantioselectivity, rendering this enzyme capable of oxidizing the "wrong" L-enantiomer of glucose. These observations suggest that in this biomaterial adsorptive interactions of the outer regions of the protein with the gold cage, pull apart and widen the tunnel between the two monomeric units of GOx, to a degree that its stereoselectivity is compromised; then, the active sites which are more versatile than currently attributed to, are free and capable of acting on the foreign sugars. To test this proposition, we entrapped in gold L-asparaginase, which is also a dimeric enzyme (a dimer of tight dimers), and found, again, that this metallic biomaterial widens the activity of that enzyme, to include the D-amino acid counter enantiomer as well. Detailed kinetic analyses for all substrates are provided for the gold bio-composites, including determination of the difference between the activation energies towards two opposite enantiomers.
Collapse
Affiliation(s)
- Yael Baruch-Shpigler
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - David Avnir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
33
|
Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat Catal 2021. [DOI: 10.1038/s41929-021-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021; 60:9326-9329. [PMID: 33559383 DOI: 10.1002/anie.202100534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/08/2022]
Abstract
The reliable design and prediction of enzyme promiscuity to access transformations not observed in nature remains a long-standing challenge. Herein, we present the first example of an intramolecular stereoselective Stetter reaction catalyzed by benzaldehyde lyase, guided by the rational structure screening of various ThDP-dependent enzymes using molecular dynamics (MD) simulations. After optimization, high productivity (up to 99 %) and stereoselectivity (up to 99:1 e.r.) for this novel enzyme function was achieved.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhiguo Wang
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujiao Lou
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Qiaoyan Zhu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Wu
- Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
35
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
36
|
Van der Verren M, Smeets V, Vander Straeten A, Dupont-Gillain C, Debecker DP. Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme-polyelectrolyte complexes. NANOSCALE ADVANCES 2021; 3:1646-1655. [PMID: 36132563 PMCID: PMC9417918 DOI: 10.1039/d0na00834f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 01/30/2021] [Indexed: 05/04/2023]
Abstract
The combination of inorganic heterogeneous catalysts and enzymes, in so-called hybrid chemoenzymatic heterogeneous catalysts (HCEHCs), is an attractive strategy to effectively run chemoenzymatic reactions. Yet, the preparation of such bifunctional materials remains challenging because both the inorganic and the biological moieties must be integrated in the same solid, while preserving their intrinsic activity. Combining an enzyme and a zeolite, for example, is complicated because the pores of the zeolite are too small to accommodate the enzyme and a covalent anchorage on the surface is often ineffective. Herein, we developed a new pathway to prepare a nanostructured hybrid catalyst built from glucose oxidase and TS-1 zeolite. Such hybrid material can catalyse the in situ biocatalytic formation of H2O2, which is subsequently used by the zeolite to trigger the epoxidation of allylic alcohol. Starting from an enzymatic solution and a suspension of zeolite nanocrystals, the hybrid catalyst is obtained in one step, using a continuous spray drying method. While enzymes are expectedly unable to resist the conditions used in spray drying (temperature, shear stress, etc.), we leverage on the preparation of "enzyme-polyelectrolyte complexes" (EPCs) to increase the enzyme stability. Interestingly, the use of EPCs also prevents enzyme leaching and appears to stabilize the enzyme against pH changes. We show that the one-pot preparation by spray drying gives access to hybrid chemoenzymatic heterogeneous catalysts with unprecedented performance in the targeted chemoenzymatic reaction. The bifunctional catalyst performs much better than the two catalysts operating as separate entities. We anticipate that this strategy could be used as an adaptable method to prepare other types of multifunctional materials starting from a library of functional nanobuilding blocks and biomolecules.
Collapse
Affiliation(s)
- Margot Van der Verren
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Valentin Smeets
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Aurélien Vander Straeten
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
37
|
Chen X, Wang Z, Lou Y, Peng Y, Zhu Q, Xu J, Wu Q. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoyang Chen
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biological, Chemical Science and Engineering Jiaxing University Jiaxing 314001 China
| | - Zhiguo Wang
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujiao Lou
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Qiaoyan Zhu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Qi Wu
- Department of Chemistry Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
38
|
Katsura S, Furuishi T, Ueda H, Yonemochi E. Cholesteryl-Conjugated Ribonuclease A Exhibits Enzyme Activity in Aqueous Solution and Resistance to Dimethyl Sulfoxide. ACS OMEGA 2021; 6:533-543. [PMID: 33458505 PMCID: PMC7807799 DOI: 10.1021/acsomega.0c05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Using bovine pancreatic ribonuclease A (RNase A) and cholesterol, we synthesized cholesteryl-conjugated ribonuclease A (CHRNase A) to evaluate the influence of a conjugated hydrophobic moiety on protein function. Nuclear magnetic resonance and matrix-assisted laser desorption/ionization time-of-flight spectrometry suggested that one cholesteryl group was conjugated to RNase A. Differential scanning calorimetry indicated that CHRNase A was denatured in the solid state but was folded in phosphate buffer (0.05 mol/L, pH 6.5). CHRNase A resembled RNase A in its secondary structure, but circular dichroism (CD) spectra revealed that the helical content of CHRNase A was decreased and the tertiary structure of CHRNase A differed from that of RNase A. Furthermore, fluorescence measurements, CD spectra, an 8-anilino-1-naphthalenesulfonic acid ammonium salt-based assay, and surface tension measurements suggested that cholesterol was conjugated to a tyrosine residue on the protein surface. The relative activity of CHRNase A to RNase A was 79 ± 7%, and the enzyme activity of CHRNase A by adding β-cyclodextrin (β-CyD) increased to 129 ± 7%. Therefore, we considered that the cholesteryl group interacted with substrate (cytidine 2'3'-cyclic monophosphate monosodium salt) to inhibit the enzyme reaction. Finally, the environment around tyrosine residues in CHRNase A in dimethyl sulfoxide was similar to that of native RNase A in phosphate buffer (0.05 mol/L, pH 6.5). These results suggest that cholesterol conjugation to RNase A altered RNase A functionality, including improvement of RNase A resistance to dimethyl sulfoxide and modulation of the ability of β-CyD to control RNase A enzymatic activity.
Collapse
Affiliation(s)
- Shinji Katsura
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Formulation
Research Laboratory, Taiho Pharmaceutical
Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takayuki Furuishi
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Haruhisa Ueda
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Etsuo Yonemochi
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
39
|
Unnikrishnan B, Lien CW, Chu HW, Huang CC. A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123397. [PMID: 32659586 DOI: 10.1016/j.jhazmat.2020.123397] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Large scale mining, manufacturing industries, exploitation of underground water, depletion of groundwater level, and uncontrolled discharge of industrial wastes have caused severe heavy metal ion pollution to the environment throughout the world. Therefore, the rapid detection of such toxic metal ions is inevitable. However, conventional methods require sophisticated instruments and skilled manpower and are difficult to operate in on-field conditions. Recently, metal nanozyme-based assays have been found to have the potential as an alternative to conventional methods due to their portability, simplicity, and high sensitivity to detect metal ion concentration to as low as parts per trillion (ppt). Metal nanozyme-based systems for heavy metal ions enable rapid and cheap screening on the spot with a very simple instrument such as a UV-vis absorption spectrophotometer and therefore, are convenient for use in field operations, especially in remote parts of the world. The sensing mechanism of a nanozyme-based sensor is highly dependent on its surface properties and specific interactions with particular metal ion species. Such method often encounters selectivity issues, unlike natural enzyme-based assays. Therefore, in this review, we mainly focus our discussion on different types of target recognition and inhibition/enhancement mechanisms, and their responses toward the catalytic activity in the sensing of target metal ions, design strategies, challenges, and future perspectives.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chia-Wen Lien
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Han-Wei Chu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
40
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
41
|
Karan R, Mathew S, Muhammad R, Bautista DB, Vogler M, Eppinger J, Oliva R, Cavallo L, Arold ST, Rueping M. Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme. Microorganisms 2020; 8:microorganisms8101594. [PMID: 33081237 PMCID: PMC7602713 DOI: 10.3390/microorganisms8101594] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
The haloarchaeon Halorubrum lacusprofundi is among the few polyextremophilic organisms capable of surviving in one of the most extreme aquatic environments on Earth, the Deep Lake of Antarctica (−18 °C to +11.5 °C and 21–28%, w/v salt content). Hence, H. lacusprofundi has been proposed as a model for biotechnology and astrobiology to investigate potential life beyond Earth. To understand the mechanisms that allow proteins to adapt to both salinity and cold, we structurally (including X-ray crystallography and molecular dynamics simulations) and functionally characterized the β-galactosidase from H. lacusprofundi (hla_bga). Recombinant hla_bga (produced in Haloferax volcanii) revealed exceptional stability, tolerating up to 4 M NaCl and up to 20% (v/v) of organic solvents. Despite being cold-adapted, hla_bga was also stable up to 60 °C. Structural analysis showed that hla_bga combined increased surface acidity (associated with halophily) with increased structural flexibility, fine-tuned on a residue level, for sustaining activity at low temperatures. The resulting blend enhanced structural flexibility at low temperatures but also limited protein movements at higher temperatures relative to mesophilic homologs. Collectively, these observations help in understanding the molecular basis of a dual psychrophilic and halophilic adaptation and suggest that such enzymes may be intrinsically stable and functional over an exceptionally large temperature range.
Collapse
Affiliation(s)
- Ram Karan
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| | - Sam Mathew
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Reyhan Muhammad
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia;
| | - Didier B. Bautista
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Malvina Vogler
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Jorg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Romina Oliva
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia;
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| |
Collapse
|
42
|
Katsura S, Furuishi T, Ueda H, Yonemochi E. Synthesis and Characterization of Cholesteryl Conjugated Lysozyme (CHLysozyme). Molecules 2020; 25:molecules25163704. [PMID: 32823837 PMCID: PMC7465789 DOI: 10.3390/molecules25163704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrophobic interaction is important for protein conformation. Conjugation of a hydrophobic group can introduce intermolecular hydrophobic contacts that can be contained within the molecule. It is possible that a strongly folded state can be formed in solution compared with the native state. In this study, we synthesized cholesteryl conjugated lysozyme (CHLysozyme) using lysozyme and cholesterol as the model protein and hydrophobic group, respectively. Cholesteryl conjugation to lysozyme was confirmed by nuclear-magnetic resonance. Differential-scanning calorimetry suggested that CHLysozyme was folded in solution. CHLysozyme secondary structure was similar to lysozyme, although circular dichroism spectra indicated differences to the tertiary structure. Fluorescence measurements revealed a significant increase in the hydrophobic surface of CHLysozyme compared with that of lysozyme; CHLysozyme self-associated by hydrophobic interaction of the conjugated cholesterol but the hydrophobic surface of CHLysozyme decreased with time. The results suggested that hydrophobic interaction changed from intramolecular interaction to an intermolecular interaction. Furthermore, the relative activity of CHLysozyme to lysozyme increased with time. Therefore, CHLysozyme likely forms a folded state with an extended durability of activity. Moreover, lysozyme was denatured in 100% DMSO but the local environment of tryptophan in CHLysozyme was similar to that of a native lysozyme. Thus, this study suggests that protein solution stability and resistance to organic solvents may be improved by conjugation of a hydrophobic group.
Collapse
Affiliation(s)
- Shinji Katsura
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Formulation research Lab., Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Haruhisa Ueda
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Correspondence: ; Tel.: +81-3-5498-5048
| |
Collapse
|
43
|
Bilal M, Wang Z, Cui J, Ferreira LFR, Bharagava RN, Iqbal HMN. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers - A drive towards greener and eco-friendlier biocatalytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137903. [PMID: 32199388 DOI: 10.1016/j.scitotenv.2020.137903] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023]
Abstract
In recent years, lignocellulosic wastes have gathered much attention due to increasing economic, social, environmental apprehensions, global climate change and depleted fossil fuel reserves. The unsuitable management of lignocellulosic materials and related organic wastes poses serious environmental burden and causes pollution. On the other hand, lignocellulosic wastes hold significant economic potential and can be employed as promising catalytic supports because of impressing traits such as surface area, porous structure, and occurrence of many chemical moieties (i.e., carboxyl, amino, thiol, hydroxyl, and phosphate groups). In the current literature, scarce information is available on this important and highly valuable aspect of lignocellulosic wastes as smart carriers for immobilization. Thus, to fulfill this literature gap, herein, an effort has been made to signify the value generation aspects of lignocellulosic wastes. Literature assessment spotlighted that all these waste materials display high potential for immobilizing enzyme because of their low cost, bio-renewable, and sustainable nature. Enzyme immobilization has gained recognition as a highly useful technology to improve enzyme properties such as catalytic stability, performance, and repeatability. The application of carrier-supported biocatalysts has been a theme of considerable research, for the past three decades, in the bio-catalysis field. Nonetheless, the type of support matrix plays a key role in the immobilization process due to its influential impact on the physicochemical characteristics of the as-synthesized biocatalytic system. In the past, an array of various organic, inorganic, and composite materials has been used as carriers to formulate efficient and stable biocatalysts. This review is envisioned to provide recent progress and development on the use of different agricultural wastes (such as coconut fiber, sugarcane bagasse, corn and rice wastes, and Brewers' spent grain) as support materials for enzyme immobilization. In summary, the effective utilization of lignocellulosic wastes to develop multi-functional biocatalysts is not only economical but also reduce environmental problems of unsuitable management of organic wastes and drive up the application of biocatalytic technology in the industry.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300 - Prédio do ITP, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research, Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
44
|
Sancheti SP, Urvashi, Shah MP, Patil NT. Ternary Catalysis: A Stepping Stone toward Multicatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04000] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Urvashi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Mosami P. Shah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
45
|
Woodley JM. Advances in biological conversion technologies: new opportunities for reaction engineering. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00422j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction engineering needs to embrace biological conversion technologies, on the road to identify more sustainable routes for chemical manufacture.
Collapse
Affiliation(s)
- John M. Woodley
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark (DTU)
- DK-2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
46
|
|
47
|
Scott AF, Luk LY, Tuñón I, Moliner V, Allemann RK. Heavy Enzymes and the Rational Redesign of Protein Catalysts. Chembiochem 2019; 20:2807-2812. [PMID: 31016852 PMCID: PMC6900096 DOI: 10.1002/cbic.201900134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 11/21/2022]
Abstract
An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled "heavy" dihydrofolate reductases and their natural-abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of "heavy" enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.
Collapse
Affiliation(s)
- Alan F. Scott
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Louis Y.‐P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de Valencia46100BurjassotSpain
| | - Vicent Moliner
- Department of Physical and Analytical ChemistryUniversitat Jaume IAvenida de Vicent Sos Baynat, s/n12071CastellonSpain
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
48
|
Leveson-Gower RB, Mayer C, Roelfes G. The importance of catalytic promiscuity for enzyme design and evolution. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0143-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Assavapanumat S, Ketkaew M, Kuhn A, Wattanakit C. Synthesis, Characterization, and Electrochemical Applications of Chiral Imprinted Mesoporous Ni Surfaces. J Am Chem Soc 2019; 141:18870-18876. [DOI: 10.1021/jacs.9b10507] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sunpet Assavapanumat
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Marisa Ketkaew
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering, School of Energy Science and Engineering and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
50
|
Considerations when Measuring Biocatalyst Performance. Molecules 2019; 24:molecules24193573. [PMID: 31623317 PMCID: PMC6804192 DOI: 10.3390/molecules24193573] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023] Open
Abstract
As biocatalysis matures, it becomes increasingly important to establish methods with which to measure biocatalyst performance. Such measurements are important to assess immobilization strategies, different operating modes, and reactor configurations, aside from comparing protein engineered variants and benchmarking against economic targets. While conventional measurement techniques focus on a single performance metric (such as the total turnover number), here, it is argued that three metrics (achievable product concentration, productivity, and enzyme stability) are required for an accurate assessment of scalability.
Collapse
|