1
|
O'Brien M, Moraru R. An Automated Computer-Vision "Bubble-Counting" Technique to Characterise CO 2 Dissolution into an Acetonitrile Flow Stream in a Teflon AF-2400 Tube-in-Tube Flow Device. Chempluschem 2023; 88:e202200167. [PMID: 35997644 DOI: 10.1002/cplu.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Indexed: 01/28/2023]
Abstract
A Teflon AF-2400 based tube-in-tube device was used to generate flow streams of CO2 in acetonitrile and a computer-vision based 'bubble counting' technique was used to estimate the amount of CO2 that had passed into solution whilst in the tube-in-tube device by quantifying the amount of CO2 that left solution (forming separate gas-phase segments) downstream of the back-pressure regulator. For both CO2 pressures used, there appeared to be a minimum residence time below which no CO2 was observed to leave solution. This was assumed to be due to residual CO2 below (or close to) the saturation concentration at atmospheric pressure and, by taking this into account, we were able to fit curves corresponding to simple gradient-driven diffusion and which closely matched previously obtained colorimetric titration data for the same system. The estimated value for the residual concentration of CO2 (0.37 M) is higher than, but in reasonable general correspondence with, saturation concentrations previously reported for CO2 in acetonitrile (0.27 M).
Collapse
Affiliation(s)
- Matthew O'Brien
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| | - Ruxandra Moraru
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| |
Collapse
|
2
|
Liu H, Jiang J, Wang C, Yang N, Yang X, Wang R. Investigations of mixing and heat transfer in a structured tube‐in‐tube millireactor by numerical, experimental and statistical methods. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanyang Liu
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Junan Jiang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Chenfeng Wang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Ning Yang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Xiaoxia Yang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Rijie Wang
- School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
3
|
Luo H, Ren J, Sun Y, Liu Y, Zhou F, Shi G, Zhou J. Recent advances in chemical fixation of CO2 based on flow chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Burange AS, Osman SM, Luque R. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience 2022; 25:103892. [PMID: 35243250 PMCID: PMC8867129 DOI: 10.1016/j.isci.2022.103892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-step organic syntheses of various drugs, active pharmaceutical ingredients, and other pharmaceutically and agriculturally important compounds have already been reported using flow synthesis. Compared to batch, hazardous and reactive reagents can be handled safely in flow. This review discusses the pros and cons of flow chemistry in today’s scenario and recent developments in flow devices. The review majorly emphasizes on the recent developments in the flow synthesis of pharmaceutically important products in last five years including flibanserin, imatinib, buclizine, cinnarizine, cyclizine, meclizine, ribociclib, celecoxib, SC-560 and mavacoxib, efavirenz, fluconazole, melitracen HCl, rasagiline, tamsulosin, valsartan, and hydroxychloroquine. Critical steps and new development in the flow synthesis of selected compounds are also discussed.
Collapse
Affiliation(s)
- Anand S. Burange
- Department of Chemistry, Wilson College, Chowpatty, Mumbai 400007, India
- Corresponding author
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 107198 Moscow, Russian Federation
- Corresponding author
| |
Collapse
|
5
|
Li W, Wu Q, Xu G, Sun Y, Huang C, Liu T. A Practical Synthesis of
N
‐aryl/
N
‐alkyl 4‐Pyridones under Continuous Flow Technology. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Weiqiang Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Qin Wu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Genrui Xu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Yinjing Sun
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials School of Chemistry and Environment Yunnan Minzu University Kunming 650500 P. R. China
| | - Teng Liu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| |
Collapse
|
6
|
Continuous Flow Synthesis of Propofol. Molecules 2021; 26:molecules26237183. [PMID: 34885756 PMCID: PMC8659244 DOI: 10.3390/molecules26237183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, we report a continuous flow process for the synthesis of 2,6-diisopropylphenol—also known as Propofol—a short-acting intravenous anesthesia, widely used in intensive care medicine to provide sedation and hypnosis. The synthesis is based on a two-step procedure: a double Friedel–Crafts alkylation followed by a decarboxylation step, both under continuous flow.
Collapse
|
7
|
Yalamanchili S, Nguyen T, Zsikla A, Stamper G, DeYong AE, Florek J, Vasquez O, Pohl NLB, Bennett CS. Automated, Multistep Continuous‐Flow Synthesis of 2,6‐Dideoxy and 3‐Amino‐2,3,6‐trideoxy Monosaccharide Building Blocks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Tu‐Anh Nguyen
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | | | - Gavin Stamper
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - Ashley E. DeYong
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - John Florek
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | - Olivea Vasquez
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| | - Nicola L. B. Pohl
- Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
| | - Clay S. Bennett
- Chemistry Tufts University 62 Talbot Ave Medford MA 02145 USA
| |
Collapse
|
8
|
Yalamanchili S, Nguyen TA, Zsikla A, Stamper G, DeYong AE, Florek J, Vasquez O, Pohl NLB, Bennett CS. Automated, Multistep Continuous-Flow Synthesis of 2,6-Dideoxy and 3-Amino-2,3,6-trideoxy Monosaccharide Building Blocks. Angew Chem Int Ed Engl 2021; 60:23171-23175. [PMID: 34463017 PMCID: PMC8511145 DOI: 10.1002/anie.202109887] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/31/2022]
Abstract
An automated continuous flow system capable of producing protected deoxy-sugar donors from commercial material is described. Four 2,6-dideoxy and two 3-amino-2,3,6-trideoxy sugars with orthogonal protecting groups were synthesized in 11-32 % overall yields in 74-131.5 minutes of total reaction time. Several of the reactions were able to be concatenated into a continuous process, avoiding the need for chromatographic purification of intermediates. The modular nature of the experimental setup allowed for reaction streams to be split into different lines for the parallel synthesis of multiple donors. Further, the continuous flow processes were fully automated and described through the design of an open-source Python-controlled automation platform.
Collapse
Affiliation(s)
| | - Tu-Anh Nguyen
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | | | - Gavin Stamper
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - Ashley E. DeYong
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - John Florek
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | - Olivea Vasquez
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| | - Nicola L. B. Pohl
- Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405
| | - Clay S. Bennett
- Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145
| |
Collapse
|
9
|
Fujiwara K, Ishitani H, Kobayashi S. Continuous-Flow Synthesis of Cationic Lipid SST-01 via Safe and Scalable Aerobic Oxidation and Reductive Amination. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katsuaki Fujiwara
- Fuji Research Park, Research Functions Unit, R&D Division, Kyowa Kirin, Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | | | | |
Collapse
|
10
|
Santos MS, Betim HLI, Kisukuri CM, Campos Delgado JA, Corrêa AG, Paixão MW. Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Org Lett 2020; 22:4266-4271. [DOI: 10.1021/acs.orglett.0c01297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marilia S. Santos
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Hugo L. I. Betim
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Camila M. Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Jose Antonio Campos Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Arlene G. Corrêa
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Márcio W. Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
11
|
Yalamanchili S, Nguyen TAV, Pohl NLB, Bennett CS. Modular continuous flow synthesis of orthogonally protected 6-deoxy glucose glycals. Org Biomol Chem 2020; 18:3254-3257. [PMID: 32293636 PMCID: PMC7289173 DOI: 10.1039/d0ob00522c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, modular continuous flow process towards accessing two orthogonally protected glycals is described with the development of reaction conditions for several common protecting group additions in flow, including the addition of benzyl, naphthylmethyl and tert-butyldimethylsilyl ethers. The process affords the desired target compounds in 57-74% overall yield in just 21-37 minutes of flow time. Furthermore, unlike batch conditions, the flow processes avoided the need for active cooling to prevent unwanted exotherms and required shorter reaction times.
Collapse
Affiliation(s)
| | - Tu-Anh V Nguyen
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145, USA.
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 212 S. Hawthorne Dr, Bloomington, IN, 47405, USA.
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02145, USA.
| |
Collapse
|
12
|
Ötvös SB, Kappe CO. Continuous-Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex. CHEMSUSCHEM 2020; 13:1800-1807. [PMID: 31894652 PMCID: PMC7187139 DOI: 10.1002/cssc.201903459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Indexed: 05/05/2023]
Abstract
Reductions of amides and esters are of critical importance in synthetic chemistry, and there are numerous protocols for executing these transformations employing traditional batch conditions. Notably, strategies based on flow chemistry, especially for amide reductions, are much less explored. Herein, a simple process was developed in which neat borane dimethylsulfide complex (BH3 ⋅DMS) was used to reduce various esters and amides under continuous-flow conditions. Taking advantage of the solvent-free nature of the commercially available borane reagent, high substrate concentrations were realized, allowing outstanding productivity and a significant reduction in E-factors. In addition, with carefully optimized short residence times, the corresponding alcohols and amines were obtained in high selectivity and high yields. The synthetic utility of the inexpensive and easily implemented flow protocol was further corroborated by multigram-scale syntheses of pharmaceutically relevant products. Owing to its beneficial features, including low solvent and reducing agent consumption, high selectivity, simplicity, and inherent scalability, the present process demonstrates fewer environmental concerns than most typical batch reductions using metal hydrides as reducing agents.
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - C. Oliver Kappe
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
- Center for Continuous Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering (RCPE)Inffeldgasse 138010GrazAustria
| |
Collapse
|
13
|
Di Filippo M, Bracken C, Baumann M. Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules 2020; 25:molecules25020356. [PMID: 31952244 PMCID: PMC7024297 DOI: 10.3390/molecules25020356] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
The last decade has witnessed a remarkable development towards improved and new photochemical transformations in response to greener and more sustainable chemical synthesis needs. Additionally, the availability of modern continuous flow reactors has enabled widespread applications in view of more streamlined and custom designed flow processes. In this focused review article, we wish to evaluate the standing of the field of continuous flow photochemistry with a specific emphasis on the generation of bioactive entities, including natural products, drugs and their precursors. To this end we highlight key developments in this field that have contributed to the progress achieved to date. Dedicated sections present the variety of suitable reactor designs and set-ups available; a short discussion on the relevance of greener and more sustainable approaches; and selected key applications in the area of bioactive structures. A final section outlines remaining challenges and areas that will benefit from further developments in this fast-moving area. It is hoped that this report provides a valuable update on this important field of synthetic chemistry which may fuel developments in the future.
Collapse
|
14
|
Fülöp Z, Szemesi P, Bana P, Éles J, Greiner I. Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00273a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the flow-oriented design (FOD) in the multi-step continuous-flow synthesis of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Zsolt Fülöp
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Péter Szemesi
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | | | | | | |
Collapse
|
15
|
Damião MCFCB, Marçon HM, Pastre JC. Continuous flow synthesis of the URAT1 inhibitor lesinurad. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00483a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A 5-steps continuous flow synthesis of lesinurad is provided and delivers this API in 68% overall yield.
Collapse
|
16
|
Zhang J, Wang E, Zhou Y, Zhang L, Chen M, Lin X. A metal-free synthesis of 1,1-diphenylvinylsulfides with thiols via thioetherification under continuous-flow conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00432d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A continuous-flow chemistry facilitated protocol that allows efficient access to a novel aggregation-induced emission (AIE) luminogen 1,1-diphenylvinylsulfides utilizing thiols under metal-free and mild conditions.
Collapse
Affiliation(s)
- Jiawei Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Erfei Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Xinrong Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education and Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
17
|
Begini F, Krasowska D, Jasiak A, Drabowicz J, Santi C, Sancineto L. Continuous flow synthesis of 2,2′-diselenobis(benzoic acid) and derivatives. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00012d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The continuous flow synthesis of the key building block 2,2′-diselenobis(benzoic acid) (DSBA) and its analogues is herein reported.
Collapse
Affiliation(s)
- Francesca Begini
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Dorota Krasowska
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Aleksandra Jasiak
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Jozef Drabowicz
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| | - Claudio Santi
- Department of Pharmaceutical Sciences
- University of Perugia
- Group of Catalysis, Synthesis and Organic Green Chemistry
- 06123 Perugia
- Italy
| | - Luca Sancineto
- Division of Organic Chemistry
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- Lodz
- Poland
| |
Collapse
|
18
|
Development of a Telescoped Flow Process for the Safe and Effective Generation of Propargylic Amines. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24203658. [PMID: 31658759 PMCID: PMC6833020 DOI: 10.3390/molecules24203658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
Abstract
Propargylic amines are important multifunctional building blocks that are frequently exploited in the synthesis of privileged heterocyclic entities. Herein we report on a novel flow process that achieves the safe and effective on-demand synthesis of propargylic amines in a telescoped manner. This process minimizes exposure to hazardous azide intermediates and renders a streamlined route into these building blocks. The value of this approach is demonstrated by the rapid generation of a small selection of drug-like thiazolines that result from a high-yielding reaction cascade between propargylic amines with different aryl isothiocyanates.
Collapse
|
19
|
Sharma M, Acharya RB, Kulkarni AA. Exploring the Steady Operation of a Continuous Pilot Plant for the Di‐Nitration Reaction. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mrityunjay Sharma
- National Chemical LaboratoryChemical Engineering & Process Development Division Pashan 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory (NCL) campus, Pashan 411008 Pune India
| | - Roopashree B. Acharya
- National Chemical LaboratoryChemical Engineering & Process Development Division Pashan 411008 Pune India
| | - Amol A. Kulkarni
- National Chemical LaboratoryChemical Engineering & Process Development Division Pashan 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR)CSIR-National Chemical Laboratory (NCL) campus, Pashan 411008 Pune India
| |
Collapse
|
20
|
Wang E, Chen M. Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium. Chem Sci 2019; 10:8331-8337. [PMID: 31803410 PMCID: PMC6844270 DOI: 10.1039/c9sc02171j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023] Open
Abstract
A polymeric monophosphine ligand WePhos has been synthesized and complexed with palladium(ii) acetate [Pd(OAc)2] to generate a thermoresponsive pre-catalyst that can shuttle between water and organic phases, with the change being regulated by temperature. The structure of the polymeric ligand was confirmed with matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry and size-exclusion chromatography (SEC) analysis, as well as nuclear magnetic resonance (NMR) measurements. This polymeric metal complex enables highly efficient Pd-catalyzed cross-couplings and tandem reactions using 50 to 500 ppm palladium, and this can facilitate reactions that are tolerant to a broad spectrum of (hetero)aryl substrates and functional groups, as demonstrated with 73 examples with up to 99% isolated yields. Notably, 97% Pd remained in the aqueous phase after 10 runs of catalyst recycling experiments, as determined via inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements, indicating highly efficient catalyst transfer. Furthermore, a continuous catalyst recycling approach has been successfully developed based on flow chemistry in combination with the catalyst shuttling behavior, allowing Suzuki-Miyaura couplings to be conducted at gram-scales with as little as 10 ppm Pd loading. Given the significance of transition-metal catalyzed cross-coupling and increasing interest in sustainable chemistry, this work is an important step towards the development of a responsive catalyst, in addition to having high activity, by tuning the structures of the ligands using polymer science.
Collapse
Affiliation(s)
- Erfei Wang
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
| |
Collapse
|
21
|
Russell MG, Jamison TF. Seven‐Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angew Chem Int Ed Engl 2019; 58:7678-7681. [DOI: 10.1002/anie.201901814] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- M. Grace Russell
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Timothy F. Jamison
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| |
Collapse
|
22
|
Seven‐Step Continuous Flow Synthesis of Linezolid Without Intermediate Purification. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Peris E, Porcar R, García-Álvarez J, Burguete MI, García-Verdugo E, Luis SV. Divergent Multistep Continuous Synthetic Transformations of Allylic Alcohol Enabled by Catalysts Immobilized in Ionic Liquid Phases. CHEMSUSCHEM 2019; 12:1684-1691. [PMID: 30803157 DOI: 10.1002/cssc.201900107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Two individual catalytic platforms (metal- and organo-catalyzed) based on the use of an ionic liquid phase were successfully integrated for the synthesis of α-cyano-amine and cyanohydrin trimethylsilyl ethers from allylic alcohol. The right combination of continuous flow processes enabled access to the divergent preparation of two alternative and interesting intermediate compounds from the same starting material.
Collapse
Affiliation(s)
- Edgar Peris
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda Sos Baynat s/n, E-12071, Castellón, Spain
| | - Raúl Porcar
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda Sos Baynat s/n, E-12071, Castellón, Spain
| | - Joaquín García-Álvarez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" (Unidad asociada al CSIC), Facultad de Química, Universidad de Oviedo, 33071, Oviedo, Spain
| | - María Isabel Burguete
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda Sos Baynat s/n, E-12071, Castellón, Spain
| | - Eduardo García-Verdugo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda Sos Baynat s/n, E-12071, Castellón, Spain
| | - Santiago V Luis
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda Sos Baynat s/n, E-12071, Castellón, Spain
| |
Collapse
|
24
|
Jaman Z, Sobreira TJP, Mufti A, Ferreira CR, Cooks RG, Thompson DH. Rapid On-Demand Synthesis of Lomustine under Continuous Flow Conditions. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zinia Jaman
- Department of Chemistry, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Tiago J. P. Sobreira
- Department of Chemistry, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - Ahmed Mufti
- School of Chemical Engineering, Purdue University, 480 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Christina R. Ferreira
- Department of Chemistry, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| | - David H. Thompson
- Department of Chemistry, Purdue University, Bindley Bioscience Center, 1203 West State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Duong ATH, Simmons BJ, Alam MP, Campagna J, Garg NK, John V. Synthesis of Fused Indolines by Interrupted Fischer Indolization in a Microfluidic Reactor. Tetrahedron Lett 2019; 60:322-326. [PMID: 30631216 PMCID: PMC6322698 DOI: 10.1016/j.tetlet.2018.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study describes our development of a microfluidic reaction scheme for the synthesis of fused indoline ring systems found in several bioactive compounds. We have utilized a continuous-flow microfluidic reactor for the reaction of hydrazines with latent aldehydes through the interrupted Fischer indolization reaction to form fused indoline and azaindoline products. We have identified optimal conditions and evaluated the scope of this microfluidic reaction using various hydrazine and latent aldehyde surrogates. This green chemistry approach can be of general utility to rapidly produce indoline scaffolds and intermediates in a continuous manner.
Collapse
Affiliation(s)
- Alexander Tuan-Huy Duong
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Bryan J Simmons
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Mohammad Parvez Alam
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Jesus Campagna
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Varghese John
- Drug Discovery Laboratory, Department of Neurology, Mary S. Easton Center for Alzheimer's Disease Research, University of California, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
26
|
Santoro S, Ferlin F, Ackermann L, Vaccaro L. C-H functionalization reactions under flow conditions. Chem Soc Rev 2019; 48:2767-2782. [PMID: 30942788 DOI: 10.1039/c8cs00211h] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
C-H functionalization technologies have progressed enormously in the last decade as testified by the great number of publications that have appeared in the literature, which are receiving great attention from researchers from different areas of expertise. While most of the protocols reported realize the C-H functionalization processes under batch conditions, there is a growing interest in the development of continuous-flow procedures aiming at increasing the performances of established methodologies or the definition of otherwise unfeasible transformations. This review summarizes the application of flow technologies for the realization of C-H functionalization reactions. According to the type of flow reactors necessary, two main general approaches are possible for the application of flow techniques, namely the use of homogeneous or heterogeneous conditions. Each example is discussed and accompanied by the description of the main features and benefits of the use of flow compared to batch conditions.
Collapse
Affiliation(s)
- Stefano Santoro
- Laboratory of Green S.O.C., Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8 - 06123 Perugia, Italy.
| | | | | | | |
Collapse
|
27
|
Abstract
This minireview offers an up-to-date overview of enabling tools for biphasic liquid–liquid reactions in flow.
Collapse
|
28
|
Integrating thin film microfluidics in developing a concise synthesis of DGJNAc: A potent inhibitor of α-N-acetylgalctosaminidases. Bioorg Med Chem Lett 2018; 28:3748-3751. [PMID: 30366618 DOI: 10.1016/j.bmcl.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
Abstract
A simple synthesis, which utilizes a thin film microfluidic reactor for a problematic step, of a potent inhibitor of α-N-acetylhexosaminidases, DGJNAc, has been developed.
Collapse
|
29
|
Seo H, Nguyen LV, Jamison TF. Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyowon Seo
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge, Massachusetts 02139 USA
| | - Long V. Nguyen
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge, Massachusetts 02139 USA
| | - Timothy F. Jamison
- Department of Chemistry; Massachusetts Institute of Technology; Cambridge, Massachusetts 02139 USA
| |
Collapse
|
30
|
Dimitriou E, Jones RH, Pritchard RG, Miller GJ, O'Brien M. Gas-liquid flow hydrogenation of nitroarenes: Efficient access to a pharmaceutically relevant pyrrolobenzo[1,4]diazepine scaffold. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Politano F, Oksdath-Mansilla G. Light on the Horizon: Current Research and Future Perspectives in Flow Photochemistry. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00213] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fabrizio Politano
- INFIQC-CONICET-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- INFIQC-CONICET-UNC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
32
|
Accelerated microfluidic native chemical ligation at difficult amino acids toward cyclic peptides. Nat Commun 2018; 9:2847. [PMID: 30030439 PMCID: PMC6054628 DOI: 10.1038/s41467-018-05264-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Cyclic peptide-based therapeutics have a promising growth forecast that justifies the development of microfluidic systems dedicated to their production, in phase with the actual transitioning toward continuous flow and microfluidic technologies for pharmaceutical production. The application of the most popular method for peptide cyclization in water, i.e., native chemical ligation, under microfluidic conditions is still unexplored. Herein, we report a general strategy for fast and efficient peptide cyclization using native chemical ligation under homogeneous microfluidic conditions. The strategy relies on a multistep sequence that concatenates the formation of highly reactive S-(2-((2-sulfanylethyl)amino)ethyl) peptidyl thioesters from stable peptide amide precursors with an intramolecular ligation step. With very fast ligation rates (<5 min), even for the most difficult junctions (including threonine, valine, isoleucine, or proline), this technology opens the door toward the scale-independent, expedient preparation of bioactive macrocyclic peptides. Flow-based peptide synthesis is a well-established method, yet difficult to combine with native chemical ligation (NCL), the go-to method for peptide cyclization. Here, the authors developed a microfluidic procedure for peptide cyclization within minutes, using NCL and an SEA alkylthioester peptide.
Collapse
|
33
|
Kim KJ, Kreider PB, Ahn HG, Chang CH. Characterization of Cotton Ball-like Au/ZnO Photocatalyst Synthesized in a Micro-Reactor. MICROMACHINES 2018; 9:E322. [PMID: 30424255 PMCID: PMC6082253 DOI: 10.3390/mi9070322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022]
Abstract
Noble metal/metal oxide nanostructures are an efficient system in photocatalysis. Continuous and scalable production of advanced particle systems will be a requirement for commercial-scale deployment for many applications, including photocatalysis. In this work, Au/ZnO structures were synthesized in a continuous flow micro-reactor at room temperature and the detailed characteristics of the product indicate a specific cotton ball-like core-shell microstructure that showcases specific advantages compared to traditional batch synthesis methods. The formation pathway of the core-shell Au/ZnO structures is discussed with the pH-dependent speciation diagram, and photocatalytic activity was assessed under simulated sunlight, demonstrating the enhanced performance of the cotton ball-like Au/ZnO microstructures in photocatalytic dye degradation. This work describes the application of microreaction technology in the continuous production of metal/metal oxide photocatalysts.
Collapse
Affiliation(s)
- Ki-Joong Kim
- National Energy Technology Laboratory (NETL), U. S. Department of Energy, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| | - Peter B Kreider
- Research School of Engineering, The Australian National University, Canberra, ACT 2602, Australia.
| | - Ho-Geun Ahn
- Department of Chemical Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Korea.
| | - Chih-Hung Chang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
34
|
Telmesani R, White JAH, Beeler AB. Liquid‐Liquid Slug‐Flow‐Accelerated [2+2] Photocycloaddition of Cinnamates. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Reem Telmesani
- Department of Chemistry Boston University 590 Commonwealth Ave Boston, MA 02215 USA
| | - Jada A. H. White
- Department of Chemistry Boston University 590 Commonwealth Ave Boston, MA 02215 USA
| | - Aaron B. Beeler
- Department of Chemistry Boston University 590 Commonwealth Ave Boston, MA 02215 USA
| |
Collapse
|
35
|
Seo H, Bédard AC, Chen WP, Hicklin RW, Alabugin A, Jamison TF. Selective N-monomethylation of primary anilines with dimethyl carbonate in continuous flow. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Ho LA, Raston CL, Stubbs KA. Angled Vortex Fluidic Mediated Multicomponent Photocatalytic and Transition Metal‐Catalyzed Reactions. Chemistry 2018; 24:8869-8874. [DOI: 10.1002/chem.201801109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/01/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Louisa A. Ho
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Colin L. Raston
- Centre for Nanoscale Science and Technology College of Science and Engineering Flinders University Sturt Road Bedford Park SA 5042 Australia
| | - Keith A. Stubbs
- School of Molecular Sciences University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| |
Collapse
|
37
|
Micro Droplet Formation towards Continuous Nanoparticles Synthesis. MICROMACHINES 2018; 9:mi9050248. [PMID: 30424181 PMCID: PMC6187485 DOI: 10.3390/mi9050248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023]
Abstract
In this paper, micro droplets are generated in a microfluidic focusing contactor and then they move sequentially in a free-flowing mode (no wall contact). For this purpose, two different micro-flow glass devices (hydrophobic and hydrophilic) were used. During the study, the influence of the flow rate of the water phase and the oil phase on the droplet size and size distribution was investigated. Moreover, the influence of the oil phase viscosity on the droplet size was analyzed. It was found that the size and size distribution of the droplets can be controlled simply by the aqueous phase flow rate. Additionally, 2D simulations to determine the droplet size were performed and compared with the experiment.
Collapse
|
38
|
Heckman LM, He Z, Jamison TF. Synthesis of Highly Substituted 2-Arylindoles via Copper-Catalyzed Coupling of Isocyanides and Arylboronic Acids. Org Lett 2018; 20:3263-3267. [DOI: 10.1021/acs.orglett.8b01132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Laurel M. Heckman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhi He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Kim H, Yonekura Y, Yoshida JI. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuya Yonekura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
40
|
Kim H, Yonekura Y, Yoshida JI. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry. Angew Chem Int Ed Engl 2018; 57:4063-4066. [DOI: 10.1002/anie.201713031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuya Yonekura
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University; Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
41
|
Shen X, Gong H, Zhou Y, Zhao Y, Lin J, Chen M. Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions: expanding the scope of ring opening metathesis polymerization. Chem Sci 2018; 9:1846-1853. [PMID: 29675230 PMCID: PMC5890785 DOI: 10.1039/c7sc04580h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022] Open
Abstract
Functionalized cyclooctenes (FCOEs) are important monomers in ring-opening metathesis polymerization (ROMP). Herein, a new library of disubstituted FCOEs bearing adjacent heteroatoms were synthesized and applied in ROMP. To address the issues associated with the handling of the reactive thienyl chloride intermediate, a two-step continuous flow method has been developed to prepare 5-thio-6-chlorocyclooctene compounds from abundant cyclooctadiene starting materials. These newly synthesized FCOE monomers were subsequently polymerized through ROMP, giving rise to a range of functionalized polymers with high molecular weights. Furthermore, we demonstrated that the thermal properties of these polymers could be fine-tuned by changing the functional groups in the FCOE monomers. We expect that this functionalization-polymerization strategy will enable the preparation of a range of polymeric materials with complex structures.
Collapse
Affiliation(s)
- Xianwang Shen
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry Education , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , China
| | - Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
| | - Yang Zhou
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
| | - Yucheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry Education , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource , Ministry Education , School of Chemical Science and Technology , Yunnan University , Kunming , 650091 , China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers , Department of Macromolecular Science , Fudan University , Shanghai 200433 , China . ; http://chenmaofudan.wixsite.com/polymao
| |
Collapse
|
42
|
Zhang P, Weeranoppanant N, Thomas DA, Tahara K, Stelzer T, Russell MG, O'Mahony M, Myerson AS, Lin H, Kelly LP, Jensen KF, Jamison TF, Dai C, Cui Y, Briggs N, Beingessner RL, Adamo A. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing. Chemistry 2018; 24:2776-2784. [PMID: 29385292 DOI: 10.1002/chem.201706004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/14/2022]
Abstract
As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards.
Collapse
Affiliation(s)
- Ping Zhang
- Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
| | - Dale A Thomas
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, USA
| | - Mary Grace Russell
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Marcus O'Mahony
- Pharmaceutical & Preclinical Sciences, Vertex Pharmaceuticals Inc., 50 Northern Avenue, Boston, MA, 02210, USA
| | - Allan S Myerson
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hongkun Lin
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Liam P Kelly
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Klavs F Jensen
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Timothy F Jamison
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chunhui Dai
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yuqing Cui
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Naomi Briggs
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rachel L Beingessner
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Andrea Adamo
- Department of Chemical Engineering or Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
43
|
Kim H, Yin Z, Sakurai H, Yoshida JI. Sequential double C–H functionalization of 2,5-norbornadiene in flow. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00131f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An integrated one-flow synthesis of 2-bromo-2,5-norbornadienes bearing a functional group at the 3-position was achieved in 3 min.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Zuoyufan Yin
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
44
|
Korwar S, Amir S, Tosso PN, Desai BK, Kong CJ, Fadnis S, Telang NS, Ahmad S, Roper TD, Gupton BF. The Application of a Continuous Grignard Reaction in the Preparation of Fluconazole. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sudha Korwar
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Somi Amir
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Perrer N. Tosso
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Bimbisar K. Desai
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Caleb J. Kong
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Swara Fadnis
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Nakul S. Telang
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Saeed Ahmad
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - Thomas D. Roper
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| | - B. Frank Gupton
- Department of Chemistry and Department of Chemical and Life Science, Engineering Virginia Commonwealth University 601 W. Main St. 23220 Richmond VA USA
| |
Collapse
|
45
|
Labes R, Battilocchio C, Mateos C, Cumming GR, de Frutos O, Rincón JA, Binder K, Ley SV. Chemoselective Continuous Ru-Catalyzed Hydrogen-Transfer Oppenauer-Type Oxidation of Secondary Alcohols. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ricardo Labes
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Claudio Battilocchio
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Carlos Mateos
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Graham R. Cumming
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Oscar de Frutos
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Juan A. Rincón
- Centro de Investigación
Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Kellie Binder
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Steven V. Ley
- Innovative
Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|