1
|
Pattarawarapan M, Wet-Osot S, Wiriya N, Hongsibsong S, Yimklan S, Phakhodee W. Ph 3P-I 2-mediated Syntheses of C-12 Carboxamide Indoloquinazolines and 2-Aminosubstituted-indol-3-ones from Isatins and Amines. Chem Asian J 2025; 20:e202401718. [PMID: 39870594 DOI: 10.1002/asia.202401718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
The Ph3P-I2-mediated reactions between isatins and amines were extensively investigated leading to the discovery of highly selective and divergent routes toward the synthesis of two distinct classes of indole-based frameworks. Through a strategic design of the reaction paths, we overcome potential side reactions to achieve convenient and straightforward one-pot methods to access either indoloquinazolines with C-12 carboxamide or 2-aminosubstituted indol-3-ones using the same reagent system. Mechanistic studies reveal the role of Ph3P-I2 in governing product selectivity, providing an efficient route to novel fused-indolone derivatives with promising applications in drug discovery and medicinal chemistry.
Collapse
Affiliation(s)
- Mookda Pattarawarapan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Wet-Osot
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nittaya Wiriya
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Surat Hongsibsong
- School of Health Science Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saranphong Yimklan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wong Phakhodee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
Marques CS, Brandão P, Burke AJ. Targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2): Latest Insights on Synthetic Strategies. Molecules 2024; 29:5341. [PMID: 39598729 PMCID: PMC11596329 DOI: 10.3390/molecules29225341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) is a crucial mediator of angiogenesis, playing a pivotal role in both normal physiological processes and cancer progression. Tumors harness VEGFR-2 signaling to promote abnormal blood vessel growth, which is a key step in the metastasis process, making it a valuable target for anticancer drug development. While there are VEGFR-2 inhibitors approved for therapeutic use, they face challenges like drug resistance, off-target effects, and adverse side effects, limiting their effectiveness. The quest for new drug candidates with VEGFR-2 inhibitory activity often starts with the selection of key structural motifs present in molecules currently used in clinical practice, expanding the chemical space by generating novel derivatives bearing one or more of these moieties. This review provides an overview of recent advances in the development of novel VEGFR-2 inhibitors, focusing on the synthesis of new drug candidates with promising antiproliferative and VEGFR-2 inhibition activities, organizing them by relevant structural features.
Collapse
Affiliation(s)
- Carolina S. Marques
- LAQV-REQUIMTE, Institute for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000-641 Evora, Portugal
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitátio, Quinta da Granja, Monte da Caparica, 2829-511 Caparica, Portugal
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Associate Laboratory i4HB–Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Anthony J. Burke
- Centro de Química de Coimbra, Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Murashkina AV, Bogdanov AV, Voloshina AD, Lyubina AP, Samorodov AV, Mitrofanov AY, Beletskaya IP, Smolyarchuk EA, Zavadich KA, Valiullina ZA, Nazmieva KA, Korunas VI, Krylova ID. Base-Catalyzed Reaction of Isatins and (3-Hydroxyprop-1-yn-1-yl)phosphonates as a Tool for the Synthesis of Spiro-1,3-dioxolane Oxindoles with Anticancer and Anti-Platelet Properties. Molecules 2024; 29:4764. [PMID: 39407692 PMCID: PMC11477635 DOI: 10.3390/molecules29194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
An approach to the synthesis of phosphoryl substituted spiro-1,3-dioxolane oxindoles was developed from the base-catalyzed reaction of various isatins with (3-hydroxyprop-1-yn-1-yl)phosphonates. It was found that various aryl-substituted and N-functionalized isatins with the formation of appropriate products with high yields and stereoselectivity when using t-BuOLi are able to react. Cytotoxic activity evaluation suggests that the most significant results in relation to the HuTu 80 cell line were shown by N-benzylated spirodioxolanes. 5-Cloro-N-unsubstituted spirooxindoles exhibit antiaggregational activity exceeding the values of acetylsalicylic acid.
Collapse
Affiliation(s)
- Arina V Murashkina
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrei V Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Alexandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Smolyarchuk
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia
| | - Kseniya A Zavadich
- The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University (Sechenov University), 119571 Moscow, Russia
| | - Zulfiya A Valiullina
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kseniya A Nazmieva
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Vladislav I Korunas
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Irina D Krylova
- Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
4
|
Marques CS, González-Bakker A, Padrón JM. The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids. Beilstein J Org Chem 2024; 20:1213-1220. [PMID: 38887573 PMCID: PMC11181168 DOI: 10.3762/bjoc.20.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Considering early-stage drug discovery programs, the Ugi four-component reaction is a valuable, flexible, and pivotal tool, facilitating the creation of two new amide bonds in a one-pot fashion to effectively yield the desired α-aminoacylamides. Here, we highlight the reputation of this reaction approach to access number and scaffold diversity of a library of isatin-based α-acetamide carboxamide oxindole hybrids, promising anticancer agents, in a mild and fast sustainable reaction process. The library was tested against six human solid tumor cell lines, among them, non-small cell lung carcinoma, cervical adenocarcinoma, breast cancer and colon adenocarcinoma. The most potent compounds 8d, 8h and 8k showed GI50 values in the range of 1-10 μM.
Collapse
Affiliation(s)
- Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Institute for Research and Advanced Studies, Rua Romão Ramalho, 59, 7000-641, Évora, Portugal
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200, La Laguna, Spain
| |
Collapse
|
5
|
Song JR, Li XJ, Shi J, Chi Q, Wu W, Ren H. Direct synthesis of N-functionalized indoles through isomerization of azomethine ylides. Org Biomol Chem 2024; 22:741-744. [PMID: 38170630 DOI: 10.1039/d3ob01393f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An unexpected isomerization of azomethine ylides generated in situ from isatin with indoline-2-carboxylic acid has been disclosed, providing direct access to N-functionalized indole scaffolds. This protocol has good functional group tolerance and provides various 3-(1H-indol-1-yl)indolin-2-one derivatives in moderate to high yields simply by using alcohol as the solvent, with no additional additive being required.
Collapse
Affiliation(s)
- Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Xiong-Jiang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China.
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| |
Collapse
|
6
|
Tallarida MA, Olivito F, Navo CD, Algieri V, Jiritano A, Costanzo P, Poveda A, Moure MJ, Jiménez-Barbero J, Maiuolo L, Jiménez-Osés G, De Nino A. Highly Diastereoselective Multicomponent Synthesis of Spirocyclopropyl Oxindoles Enabled by Rare-Earth Metal Salts. Org Lett 2023; 25:3001-3006. [PMID: 37125666 PMCID: PMC10167684 DOI: 10.1021/acs.orglett.3c00772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The synthesis of polysubstituted spirocyclopropyl oxindoles using a series of rare-earth metal (REM) salts is reported. REMs, in particular Sc(OTf)3, allowed access to the target compounds by a multicomponent reaction with high diastereoselectivity (≤94:6:0:0). Density functional theory calculations on the model reaction are consistent with the observed selectivity and revealed that the special coordinating capabilities and the oxophilicity of the metal are key factors in inducing the formation of one main diastereoisomer.
Collapse
Affiliation(s)
- Matteo A Tallarida
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Vincenzo Algieri
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Antonio Jiritano
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Paola Costanzo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Maria J Moure
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, Leioa 48940, Bizkaia, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Loredana Maiuolo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antonio De Nino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Rende, Italy
| |
Collapse
|
7
|
Nichinde CB, Patil BR, Chaudhari SS, Mali BP, Gonnade RG, Kinage AK. Organocatalysed one-pot three component synthesis of 3,3'-disubstituted oxindoles featuring an all-carbon quaternary center and spiro[2 H-pyran-3,4'-indoline]. RSC Adv 2023; 13:13206-13212. [PMID: 37123998 PMCID: PMC10140734 DOI: 10.1039/d3ra00510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
A simple and efficient methodology for the one-pot synthesis of 3,3'-disubstituted oxindoles featuring an all-carbon quaternary center has been demonstrated through l-proline catalysed three-component reaction based on sequential Knoevenagel condensation/Michael addition and also one-pot synthesis of spiro[2H-pyran-3,4'-indoline] through consecutive Knoevenagel condensation/Michael addition/reduction/cyclization reactions from readily available isatin derivatives, malononitrile, and ketones. The present methodology presents several advantages, including simple reaction set-up, short reaction times, and easy to work-up. Also, this strategy offers broad substrate scope with excellent yields and high atom economy, under mild reaction conditions.
Collapse
Affiliation(s)
- Chandrakant B Nichinde
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Baliram R Patil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Suryakant S Chaudhari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| | - Bhupendra P Mali
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune India-410 008
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune India-410 008
| | - Anil K Kinage
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory Pune India-410 008
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201 002 India
| |
Collapse
|
8
|
Pang Q, Zuo WF, Zhang Y, Li X, Han B. Recent Advances on Direct Functionalization of Indoles in Aqueous Media. CHEM REC 2023; 23:e202200289. [PMID: 36722727 DOI: 10.1002/tcr.202200289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 02/02/2023]
Abstract
Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
9
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|
10
|
Malatini C, Carbajales C, Luna M, Beltrán O, Amorín M, Masaguer CF, Blanco JM, Barbosa S, Taboada P, Coelho A. 3D-Printing of Capsule Devices as Compartmentalization Tools for Supported Reagents in the Search of Antiproliferative Isatins. Pharmaceuticals (Basel) 2023; 16:310. [PMID: 37259453 PMCID: PMC9965165 DOI: 10.3390/ph16020310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 10/29/2023] Open
Abstract
The application of high throughput synthesis methodologies in the generation of active pharmaceutical ingredients (APIs) currently requires the use of automated and easily scalable systems, easy dispensing of supported reagents in solution phase organic synthesis (SPOS), and elimination of purification and extraction steps. The recyclability and recoverability of supported reagents and/or catalysts in a rapid and individualized manner is a challenge in the pharmaceutical industry. This objective can be achieved through a suitable compartmentalization of these pulverulent reagents in suitable devices for it. This work deals with the use of customized polypropylene permeable-capsule devices manufactured by 3D printing, using the fused deposition modeling (FDM) technique, adaptable to any type of flask or reactor. The capsules fabricated in this work were easily loaded "in one step" with polymeric reagents for use as scavengers of isocyanides in the work-up process of Ugi multicomponent reactions or as compartmentalized and reusable catalysts in copper-catalyzed cycloadditions (CuAAC) or Heck palladium catalyzed cross-coupling reactions (PCCCRs). The reaction products are different series of diversely substituted isatins, which were tested in cancerous cervical HeLa and murine 3T3 Balb fibroblast cells, obtaining potent antiproliferative activity. This work demonstrates the applicability of 3D printing in chemical processes to obtain anticancer APIs.
Collapse
Affiliation(s)
- Camilla Malatini
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Carbajales
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mariángel Luna
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Osvaldo Beltrán
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Manuel Amorín
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Christian F Masaguer
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M Blanco
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, CP 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
The preparation of polyvinyl imidazole-functionalized magnetic biochar decorated by silver nanoparticles as an efficient catalyst for the synthesis of spiro-2-Amino-4H-pyran compounds. Sci Rep 2022; 12:22281. [PMID: 36566247 PMCID: PMC9789996 DOI: 10.1038/s41598-022-25857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
The silver nanoparticle was synthesized by developing poly (1-vinylimidazole) on the surface of magnetized biochar (the stem and roots of Spear Thistle) (biochar/Fe3O4/PVIm/Ag). This nanocomposite was characterized by Fourier-transformed infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The SEM and TEM images of the nanocatalyst, biochar/Fe3O4/PVIm/Ag-NPs, confirmed the observation of microscopic sheets of biochar. The catalytic activity of these Ag NPs was tested via multicomponent reaction plus reusing to successful formation of 2-amino-4H-pyran and functionalized spirochromen derivatives. The prepared nanocatalyst was easily separated by an external magnet and reused in repeating coupling reaction cycles four times without remarkable activity loss. The catalyst showed great efficiency and reusability, thus making it an ideal candidate for catalytic purposes in several organic transformations.
Collapse
|
12
|
D B, C S A, D SV, T AK, Somappa SB. Multicomponent Synthesis of Spiro-dihydropyridine Oxindoles via Cascade Spiro-cyclization of Knoevenagel/Aza-Michael Adducts. J Org Chem 2022; 87:13556-13563. [PMID: 36194438 DOI: 10.1021/acs.joc.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient, straightforward, and one-pot synthesis of biologically relevant spiro-dihydropyridine oxindoles was described via readily available isatin, malononitrile, allenoate, and amines. The metal/organocatalyst-free, Et3N-mediated reaction proceeds via cascade spiro-cyclization of in situ generated Knoevenagel/aza-Michael adducts. The reaction has great flexibility over electron-rich and electron-poor substituents affording desired products in good to excellent yields. We have also demonstrated the selected spiro-dihydropyridines for late-stage diversification into new spiro-dihydropyridine hybrids of pharmaceutical relevance.
Collapse
Affiliation(s)
- Basavaraja D
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Athira C S
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Siddalingeshwar V D
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Ashitha K T
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| | - Sasidhar B Somappa
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Thiruvanthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR, Ghaziabad 201002, India
| |
Collapse
|
13
|
Liu X, Wang Y, Wu S, Jiang W, Zeng R, Cao H. Four-Component Cyclization of Naphthol/Thionaphthol/Naphthylamine, Formaldehyde, and DBU in Water. J Org Chem 2022; 87:13819-13827. [PMID: 36223276 DOI: 10.1021/acs.joc.2c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and environmentally benign cascade multicomponent condensation of naphthol/thionaphthol/naphthylamine, formaldehyde, and DBU in water without any catalysts has been achieved. A wide variety of dihydrooxazine, dihydrothiazine, and tetrahydrobenzoquinazoline derivatives N-substituted with a tether bearing a caprolactam unit were afforded in moderate to good yields. The advantages of being cost-effective, metal-free, and easily handled and the use of water as medium made this protocol conform with the principle of green synthesis.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Songxin Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Wenxuan Jiang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Ruyi Zeng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
14
|
Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci Rep 2022; 12:8642. [PMID: 35606381 PMCID: PMC9126885 DOI: 10.1038/s41598-022-10774-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
AbstractIn this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV–Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH. The Cs-EDTA-Cell nanocatalyst can be easily recovered from the reaction mixture by using filtration and reused for at least five times without significant decrease in its catalytic activity. In general, the Cs-EDTA-Cell network, as a heterogeneous catalyst, demonstrated excellent catalytic activity in an environmentally-benign solvent to afford desired products in short reaction times and required simple experimental and work-up procedure compared to many protocols using similar catalytic systems.
Collapse
|
15
|
Wang K, Li Y, Chen R, Sun A, Wang Z, Zhao Y, Wang M, Sheng S. Substrate‐Controlled Regioselectivity Switch in a Three‐Component 1,3‐Dipolar Cycloaddition Reaction to Access 3,3′‐Pyrrolidinyl‐Spirooxindoles Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Yan‐Li Li
- Medical College Xinxiang University Xinxiang 453000 People's Republic of China
| | - Rong‐Xiang Chen
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ai‐Li Sun
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ying‐Chao Zhao
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ming‐Yue Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Shi Sheng
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| |
Collapse
|
16
|
Brandão P, Puerta A, Padrón JM, Kuznetsov ML, Burke AJ, Pineiro M. Ugi Adducts of Isatin as Promising Antiproliferative Agents with Druglike Properties. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry University of Coimbra 3004-535 Coimbra Portugal
- LAQV-REQUIMTE University of Évora Rua Romão Ramalho, 59 7000 Évora Portugal
| | - Adrián Puerta
- BioLab Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG) Universidad de La Laguna PO Box 456 38200 La Laguna Spain
| | - José M. Padrón
- BioLab Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG) Universidad de La Laguna PO Box 456 38200 La Laguna Spain
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Avenida Rovisco Pais 1049-001 Lisbon Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE University of Évora Rua Romão Ramalho, 59 7000 Évora Portugal
- Department of Chemistry University of Evora Rua Romão Ramalho, 59 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
17
|
Brandão P, López Ó, Leitzbach L, Stark H, Fernández-Bolaños JG, Burke AJ, Pineiro M. Ugi Reaction Synthesis of Oxindole-Lactam Hybrids as Selective Butyrylcholinesterase Inhibitors. ACS Med Chem Lett 2021; 12:1718-1725. [PMID: 34795859 PMCID: PMC8591717 DOI: 10.1021/acsmedchemlett.1c00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular hybridization is a valuable approach in drug discovery. Combining it with multicomponent reactions is highly desirable, since structurally diverse libraries can be attained efficiently in an eco-friendly manner. In this work, isatin is used as the key building block for the Ugi 4-center 3-component reaction synthesis of oxindole-lactam hybrids, under catalyst-free conditions. The resulting oxindole-β-lactam and oxindole-γ-lactam hybrids were evaluated for their potential to inhibit relevant central nervous system targets, namely cholinesterases and monoamine oxidases. Druglikeness evaluation was also performed, and compounds 4eca and 5dab exhibited great potential as selective butyrylcholinesterase inhibitors, at the low micromolar range, with an interesting predictive pharmacokinetic profile. Our findings herein reported suggest oxindole-lactam hybrids as new potential agents for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Pedro Brandão
- University
of Coimbra, CQC and Department
of Chemistry, 3004-535 Coimbra, Portugal
- LAQV-REQUIMTE,
Rua Romão Ramalho, 59, University
of Évora, 7000 Évora, Portugal
| | - Óscar López
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Luisa Leitzbach
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, NRW, Germany
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, NRW, Germany
| | - José G. Fernández-Bolaños
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Anthony J. Burke
- LAQV-REQUIMTE,
Rua Romão Ramalho, 59, University
of Évora, 7000 Évora, Portugal
- University
of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Marta Pineiro
- University
of Coimbra, CQC and Department
of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
18
|
Bogdanov AV, Andreeva OV, Belenok MG, Voloshina AD, Enikeeva KI, Samorodov AV, Mironov VF. Synthesis of Triazolylisatins Glycoconjugates and Some Ammonium Hydrazones on Their Basis. RUSS J GEN CHEM+ 2021; 91:1282-1291. [DOI: 10.1134/s1070363221070045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 05/10/2025]
|
19
|
Brandão P, Marques C, Pinto E, Pineiro M, Burke AJ. Petasis adducts of tryptanthrin – synthesis, biological activity evaluation and druglikeness assessment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of a tryptanthrin-based Petasis multicomponent reaction is reported, with one of the new derivatives showing moderate fungicidal activity.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | | | - Eugénia Pinto
- Laboratório de Microbiologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313 Porto
| | - Marta Pineiro
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE
- University of Évora
- Évora
- Portugal
- Department of Chemistry
| |
Collapse
|