1
|
Oksanen V, Malinen K, Hu T, Reznichenko A, Wirtanen T. TEMPO-Mediated Paired Electrosynthesis of Ethylene Glycol from Formaldehyde and Methanol at High Current Densities. CHEMSUSCHEM 2025:e2500123. [PMID: 40152423 DOI: 10.1002/cssc.202500123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Herein, a paired electrosynthesis of ethylene glycol from formaldehyde and methanol facilitated by TEMPO is reported. The use of TEMPO accentuates formaldehyde production at the anode, providing additional formaldehyde into the cathodic coupling process. The reaction is performed in water/methanol solution in a simple undivided cell using sulfuric acid-treated graphite electrodes with industrially feasible current densities between 300 and 350 mA cm-2. Other components of the reaction are sodium chloride which is used as a supporting electrolyte and tributylmethylammonium chloride which raises the current efficiency. With a slight modification in the reaction temperature and current density, the outcome can be tuned from high current efficiency toward higher chemical yields. The conditions of the batch reaction are successfully transferred to a continuous flow-cell arrangement. Mechanistic studies indicate the involvement of hydroxymethyl radicals in the electrolysis, and deuterium-labeling experiments show the partial conversion of methanol into formaldehyde and ethylene glycol.
Collapse
Affiliation(s)
- Valtteri Oksanen
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| | - Kiia Malinen
- School of Chemical Engineering, Aalto University, Box 11000, FI-00076, Aalto, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, Box 4300, FI-90014, Oulu, Finland
| | - Alexander Reznichenko
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| | - Tom Wirtanen
- Chemical and Polymer Synthesis, VTT Technical Research Centre of Finland Ltd.,, Box 1000, FI-02044, Espoo, Finland
| |
Collapse
|
2
|
Liu T, McMullin C, Taylor JE, Marken F. Paired Electrosynthesis at Interdigitated Microband Array Electrodes without Intentionally Added Electrolyte: C-C Coupling of Dicyanobenzenes with Methanol. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3014-3021. [PMID: 39968334 PMCID: PMC11833768 DOI: 10.1021/acs.jpcc.4c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
The formation of substituted benzyl alcohols from dicyanobenzenes and methanol (C-C coupling) is demonstrated as a model system for paired electrosynthesis and investigated at interdigitated microband array electrodes in a microreactor with/without intentionally added supporting electrolyte. A Pt-Pt microband array with 5 μm bands separated by 5 μm gaps is employed in a dimethyl sulfoxide (DMSO) solvent. Yields are optimized to approximately 50% at the point of 100% conversion. The mechanism is investigated by employing isotope labeling (CD3OD, CH3OD, d 6-DMSO, 13CH3OH). The methylene group (12C or 13C) is obtained with H2, D2, and DH substitution patterns, and a hypothesis for a corresponding mechanism is discussed aided with density functional theory (DFT) calculations. Implications for sustainable electrosynthesis at paired microband electrodes are discussed.
Collapse
Affiliation(s)
- Tingran Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Claire McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - James E. Taylor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
3
|
Fang X, Hu X, Li QX, Ni SF, Ruan Z. Paired Electro-Synthesis of Remote Amino Alcohols with/in H 2O. Angew Chem Int Ed Engl 2025; 64:e202418277. [PMID: 39535322 DOI: 10.1002/anie.202418277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Amino alcohols, particularly remote amino alcohols and peptide alcohols, are valuable due to their functional diversity in biologically active compounds. However, traditional synthesis methods face significant challenges, making electrochemistry an attractive alternative. We have developed a mild and biocompatible sequential paired electrolysis strategy, leveraging copper-electrocatalysis to synthesize diverse remote amino alcohols, including unnatural peptide alcohols. Both experimental results and density functional theory (DFT) calculations demonstrated that water serves as both the hydroxyl source and the solvent, facilitating the generation of CuH with Cu(I) at the cathode, which in turn reduces the aldehyde intermediates formed during the reaction.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Quan-Xin Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
4
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
5
|
Torabi S, Jamshidi M, Hilt G. Electrochemical Bromination of Arenes in a 200% Cell. J Org Chem 2024; 89:13953-13958. [PMID: 39320048 PMCID: PMC11460727 DOI: 10.1021/acs.joc.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Herein, we describe the investigation of electrochemical bromination of electron-rich arenes in a 200% cell. For this application, at first, the influence of an excess of supporting electrolyte (Bu4NBr) on chemical bromination was investigated. The application of >4.0 equiv of Bu4NBr proved to enhance the regioselectivity of the bromination process for O- and N-substituted arenes considerably. The linear paired electrolysis was then optimized upon these insights, and a number of electron-rich arenes could be brominated in high yields with excellent regioselectivity. The use of O2 as a sacrificial starting material in combination with 2-ethylanthraquinone as a catalyst leads to the enhanced formation of H2O2 at the cathode, resulting in current efficiencies >150% for a considerable number of examples.
Collapse
Affiliation(s)
- Sara Torabi
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Mahdi Jamshidi
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Gerhard Hilt
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
6
|
Lai Y, Milner PJ. Paired Electrolysis Enables Reductive Heck Coupling of Unactivated (Hetero)Aryl Halides and Alkenes. Angew Chem Int Ed Engl 2024; 63:e202408834. [PMID: 38900083 PMCID: PMC11427156 DOI: 10.1002/anie.202408834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The formation of carbon-carbon (C-C) bonds is a cornerstone of organic synthesis. Among various methods to construct Csp2-Csp3 bonds, the reductive Heck reaction between (hetero)aryl halides and alkenes stands out due to its potential efficiency and broad substrate availability. However, traditional reductive Heck reactions are limited by the use of precious metal catalysts and/or limited aryl halide and alkene compatibility. Here, we present an electrochemically mediated, metal- and catalyst-free reductive Heck reaction that tolerates both unactivated (hetero)aryl halides and diverse alkenes such as vinyl boronates and silanes. Detailed electrochemical and deuterium-labeling studies support that this transformation likely proceeds through a paired electrolysis pathway, in which acid generated by the oxidation of N,N-diisopropylethylamine (DIPEA) at the anode intercepts an alkyl carbanion formed after radical-polar crossover at the cathode. As such, this approach offers a sustainable method for the construction of Csp2-Csp3 bonds from (hetero)aryl halides and alkenes, paving the way for the development of other electrochemically mediated olefin difunctionalization reactions.
Collapse
Affiliation(s)
- Yihuan Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
7
|
Yuan GC, Gao FL, Liu KW, Li M, Lin Y, Ye KY. Batch and Continuous-Flow Electrochemical Geminal Difluorination of Indeno[1,2- c]furans. Org Lett 2024; 26:6059-6064. [PMID: 38968416 DOI: 10.1021/acs.orglett.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
An electrochemical gem-difluorination of indeno[1,2-c]furans using commercially available and easy-to-use triethylamine trihydrofluoride as both the electrolyte and fluorinating agent was developed. Remarkably, different reaction pathways of indeno[1,2-c]furans, i.e., paired electrolysis and net oxidation, are operative in a batch reactor and a continuous-flow microreactor to afford the corresponding gem-difluorinated indanones and indenones, respectively.
Collapse
Affiliation(s)
- Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fang-Ling Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kang-Wei Liu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minggang Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuqi Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Liu T, Carneiro-Neto EB, Pereira E, Taylor JE, Fletcher PJ, Marken F. Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte. ACS MEASUREMENT SCIENCE AU 2024; 4:294-306. [PMID: 38910865 PMCID: PMC11191726 DOI: 10.1021/acsmeasuresciau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 06/25/2024]
Abstract
Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1'-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt-Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.
Collapse
Affiliation(s)
- Tingran Liu
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Evaldo Batista Carneiro-Neto
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - Ernesto Pereira
- Department
of Chemistry, Federal University of São
Carlos, Rod. Washington Luiz, Km 235, CEP 13565-905 São Carlos, SP, Brazil
| | - James E. Taylor
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Philip J. Fletcher
- Materials
& Chemical Characterisation Facility, MC, University of Bath, Bath BA2 7AY, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
9
|
Ware SD, Zhang W, Guan W, Lin S, See KA. A guide to troubleshooting metal sacrificial anodes for organic electrosynthesis. Chem Sci 2024; 15:5814-5831. [PMID: 38665512 PMCID: PMC11041367 DOI: 10.1039/d3sc06885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
The development of reductive electrosynthetic reactions is often enabled by the oxidation of a sacrificial metal anode, which charge-balances the reductive reaction of interest occurring at the cathode. The metal oxidation is frequently assumed to be straightforward and innocent relative to the chemistry of interest, but several processes can interfere with ideal sacrificial anode behavior, thereby limiting the success of reductive electrosynthetic reactions. These issues are compounded by a lack of reported observations and characterization of the anodes themselves, even when a failure at the anode is observed. Here, we weave lessons from electrochemistry, interfacial characterization, and organic synthesis to share strategies for overcoming issues related to sacrificial anodes in electrosynthesis. We highlight common but underexplored challenges with sacrificial anodes that cause reactions to fail, including detrimental side reactions between the anode or its cations and the components of the organic reaction, passivation of the anode surface by an insulating native surface film, accumulation of insulating byproducts at the anode surface during the reaction, and competitive reduction of sacrificial metal cations at the cathode. For each case, we propose experiments to diagnose and characterize the anode and explore troubleshooting strategies to overcome the challenge. We conclude by highlighting open questions in the field of sacrificial-anode-driven electrosynthesis and by indicating alternatives to traditional sacrificial anodes that could streamline reaction optimization.
Collapse
Affiliation(s)
- Skyler D Ware
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
10
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
11
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Chen H, Shen C, Dong K. Parallel Paired Photoelectrochemical Bromination of Alkylarenes with Electrochemical Pinacol Coupling. J Org Chem 2024; 89:2550-2555. [PMID: 38289158 DOI: 10.1021/acs.joc.3c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A paired electrochemical method for paralleling benzylic bromination of alkylarenes under irradiation with reductive pinacol coupling in a divided cell has been developed. A variety of benzyl bromides at the anode and pinacols at the cathode were obtained simultaneously in moderate-to-high faradaic efficiency. This parallel paired electrochemical protocol showed a broad substrate scope and high chemoselectivity as well as high synthetic and faradaic efficiencies.
Collapse
Affiliation(s)
- Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Kumar S, Chand S, Singh KN. Electro-oxidative coupling of Bunte salts with aryldiazonium tetrafluoroborates: a benign access to unsymmetrical sulfoxides. Org Biomol Chem 2024; 22:850-856. [PMID: 38175526 DOI: 10.1039/d3ob01955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An electrochemical strategy for the synthesis of unsymmetrical sulfoxides has been explored using Bunte salts and aryldiazonium tetrafluoroborates under constant current electrolysis at room temperature. In addition to being eco-safe and using mild conditions, the present protocol is free from the use of metal/oxidant, and is endowed with a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Xiang F, Wang D, Xu K, Zeng CC. Paired Electrolysis Enabled Trifluoromethylheteroaromatization of Alkenes and Alkyne with Trifluoromethyl Thianthrenium Triflate (TT-CF 3+OTf -) as a Bifunctional Reagent. Org Lett 2024; 26:411-415. [PMID: 38147569 DOI: 10.1021/acs.orglett.3c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We report a strategic exploitation of trifluoromethyl thianthrenium triflate (TT-CF3+OTf-) as both electromediator and CF3 radical precursors for paired electrolysis. Enabled by this strategy, the three-component trifluoromethylheteroaromatization of alkenes and alkynes was realized. The superiority of TT-CF3+OTf- to other electrophilic CF3 reagents is attributed to the cathodic generation of thianthrene (TT) as a mediator, which shifts the heterogeneous oxidation of interest to a homogeneous one.
Collapse
Affiliation(s)
- Fang Xiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dehui Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
Lu J, Yao Y, Li L, Fu N. Dual Transition Metal Electrocatalysis: Direct Decarboxylative Alkenylation of Aliphatic Carboxylic Acids. J Am Chem Soc 2023. [PMID: 38029443 DOI: 10.1021/jacs.3c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Direct decarboxylative alkenylation of widely available aliphatic carboxylic acids with vinyl halides for the synthesis of alkenes with all substitution patterns has been accomplished by means of Ce/Ni dual transition metal electrocatalysis. The reactions employ alkyl acids as the limiting reagents and exhibit a broad scope with respect to both coupling partners. Notably, simple primary alkyl carboxylic acids could be readily engaged as carbon-centered radical precursors in the reaction. This new alkenylation protocol has been successfully demonstrated in direct modification of naturally occurring complex acids and is amenable to the enantioselective decarboxylative alkenylation of arylacetic acid. Mechanistic studies, including a series of controlled experiments and cyclic voltammetry data, allow us to probe the key intermediates and the pathway of the reaction.
Collapse
Affiliation(s)
- Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Laborda E, López-Asanza J, Molina A. Theoretical Framework and Guidelines for the Cyclic Voltammetry of Closed Bipolar Cells. Anal Chem 2023; 95:17311-17317. [PMID: 37956247 PMCID: PMC10688229 DOI: 10.1021/acs.analchem.3c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Closed bipolar cells (cBPCs) can offer valuable platforms for the development of electrochemical sensors. On the other hand, such systems are more intricate to model and interpret than conventional systems with a single polarizable interface, with the applied potential "splitting" into two polarized interfaces where two coupled charge transfers take place concomitantly. As a result, the voltammetry of cBPCs shows peculiarities that can be misleading if analyzed under the framework of classic electrochemical cells. In this work, rigorous mathematical solutions are deduced for the cyclic voltammetry (CV) of cBPCs, including the current-potential response, the interfacial potentials, and the interfacial redox concentrations. With such theoretical tools, a comprehensive view of the behavior of cBPCs can be gained, and adequate diagnosis criteria are established on the basis of the shape, magnitude, and position of the CV signal as a function of the scan rate and of the experimental conditions in the anodic and cathodic compartments.
Collapse
Affiliation(s)
- Eduardo Laborda
- Departamento de Química
Física, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Javier López-Asanza
- Departamento de Química
Física, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| | - Angela Molina
- Departamento de Química
Física, Facultad de Química, Regional Campus of International
Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
17
|
Moeller KD. Concluding remarks: A summary of the Faraday Discussion on electrosynthesis. Faraday Discuss 2023; 247:342-359. [PMID: 37747692 DOI: 10.1039/d3fd00148b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A summary of the Faraday Discussion presented in this issue and a perspective on that discussion is presented. The work highlights the specific science contributions made and the key conclusions associated with those findings so that readers can identify papers that they would like to explore in more detail.
Collapse
Affiliation(s)
- Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
18
|
Wang H, Liu R, Sun Q, Xu K. Direct alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. Chem Commun (Camb) 2023; 59:12763-12766. [PMID: 37812023 DOI: 10.1039/d3cc04356h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The metal-free alkylation of N-heterocycles with alkenes has remained a synthetic challenge. We report here the successful implementation of metal-free alkylation of quinoxalinones with electron-deficient alkenes enabled by a sequential paired electrolysis. This protocol provides a mechanistically distinct approach to prepare a variety of C-3 alkylated quinoxalinones that are otherwise quite difficult to synthesize by other means.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ruoyu Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Zhang X, Li Z, Chen H, Shen C, Wu H, Dong K. Pairing Electrocarboxylation of Unsaturated Bonds with Oxidative Transformation of Alcohol and Amine. CHEMSUSCHEM 2023; 16:e202300807. [PMID: 37366066 DOI: 10.1002/cssc.202300807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
A parallel paired electrosynthetic method, coupling electrocarboxylation incorporating CO2 into ketone, imine, and alkene with alcohol oxidation or oxidative cyanation of amine, was developed for the first time. Various carboxylic acids as well as aldehyde/ketone or α-nitrile amine were prepared at the cathode and anode respectively in a divided cell. Its utility and merits on simultaneously achieving high atom-economic CO2 utilization, elevated faradaic efficiency (FE, total FE of up to 166 %), and broad substrate scope were demonstrated. The preparation of pharmaceutical intermediates for Naproxen and Ibuprofen via this approach proved its potential application in green organic electrosynthesis.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Zonghan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
20
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
21
|
He T, Liang C, Huang S. Cobalt-electrocatalytic C-H hydroxyalkylation of N-heteroarenes with trifluoromethyl ketones. Chem Sci 2022; 14:143-148. [PMID: 36605737 PMCID: PMC9769098 DOI: 10.1039/d2sc05198b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Trifluoromethyl carbinols and N-heteroarenes are both prevalent in bioactive molecules. However, access to high-value pharmacophores combining these two functional groups still remains a challenge. Herein, we report an electro-chemical redox-neutral coupling for the synthesis of N-heteroaryl trifluoromethyl carbinols from readily available N-heteroarenes and trifluoromethyl ketones. The reaction starts with reversing the polarity of ketones to nucleophilic ketyl radicals through an electrocatalytic proton-coupled electron transfer (PCET), followed by radical addition to heteroarenes and rearomatization to afford tertiary alcohol products. Importantly, the merging of paired electrolysis and cobalt catalysis is crucial to this regioselective C-H hydroxyalkylation of heteroarenes, and thus avoids several known competing pathways including the spin-center shift (SCS) process. Collectively, this protocol provides straightforward access to heteroaryl trifluoromethyl carbinols, featuring ideal atom economy, excellent regioselectivity, and paired redox-neutral electrolysis.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| | - Chaoqiang Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry UniversityNanjing 210037China
| |
Collapse
|
22
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
23
|
Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205077. [PMID: 36398622 PMCID: PMC9811472 DOI: 10.1002/advs.202205077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Electro-organic synthesis has attracted a lot of attention in pharmaceutical science, medicinal chemistry, and future industrial applications in energy storage and conversion. To date, there has not been a detailed review on electro-organic synthesis with the strategy of heterogeneous catalysis. In this review, the most recent advances in synthesizing value-added chemicals by heterogeneous catalysis are summarized. An overview of electrocatalytic oxidation and reduction processes as well as paired electrocatalysis is provided, and the anodic oxidation of alcohols (monohydric and polyhydric), aldehydes, and amines are discussed. This review also provides in-depth insight into the cathodic reduction of carboxylates, carbon dioxide, CC, C≡C, and reductive coupling reactions. Moreover, the electrocatalytic paired electro-synthesis methods, including parallel paired, sequential divergent paired, and convergent paired electrolysis, are summarized. Additionally, the strategies developed to achieve high electrosynthesis efficiency and the associated challenges are also addressed. It is believed that electro-organic synthesis is a promising direction of organic electrochemistry, offering numerous opportunities to develop new organic reaction methods.
Collapse
Affiliation(s)
- Tariq Ali
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeCS87036Italy
| | - Tariq Bashir
- Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006China
| | - Rahim Shah
- Institute of Chemical SciencesUniversity of SwatSwatKhyber Pakhtunkhwa19130Pakistan
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsDepartment of ChemistryZhejiang Normal UniversityJinhua321004China
- Hangzhou Institute of Advanced StudiesZhejiang Normal UniversityHangzhou311231China
| |
Collapse
|
24
|
Paired electrosynthesis in the CH3CN/CHal4 system: a one-pot procedure for diarylamines and N,N’-diarylbenzidines halogenation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Xue P, Li L, Fu N. Pairing Iron and Nickel Catalysis for Electrochemical Esterification of Aryl Halides with Carbazates. Org Lett 2022; 24:7595-7599. [PMID: 36201293 DOI: 10.1021/acs.orglett.2c03034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an electrocatalytic approach for esterification of aryl halides by pairing iron and nickel electrocatalysis. The reaction involves anodically iron-catalyzed oxidation of carbazates to produce alkoxycarbonyl radicals. The carbon-centered radicals then enter nickel catalysis that is powered by cathodic reduction to deliver the radical coupling products. Mechanistic data are consistent with arylnickel(II) species as the key intermediates enabling the desired carbon-carbon bond formation.
Collapse
Affiliation(s)
- Peng Xue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat Commun 2022; 13:5297. [PMID: 36075932 PMCID: PMC9458668 DOI: 10.1038/s41467-022-32933-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Room temperature and selective hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines using a safe and clean hydrogen donor catalyzed by cost-effective materials is significant yet challenging because of the difficult activation of quinolines and H2. Here, a fluorine-modified cobalt catalyst is synthesized via electroreduction of a Co(OH)F precursor that exhibits high activity for electrocatalytic hydrogenation of quinolines by using H2O as the hydrogen source to produce 1,2,3,4-tetrahydroquinolines with up to 99% selectivity and 94% isolated yield under ambient conditions. Fluorine surface-sites are shown to enhance the adsorption of quinolines and promote water activation to produce active atomic hydrogen (H*) by forming F−-K+(H2O)7 networks. A 1,4/2,3-addition pathway involving H* is proposed through combining experimental and theoretical results. Wide substrate scopes, scalable synthesis of bioactive precursors, facile preparation of deuterated analogues, and the paired synthesis of 1,2,3,4-tetrahydroquinoline and industrially important adiponitrile at a low voltage highlight the promising applications of this methodology. Selective hydrogenation of quinolines with easy-to-handle hydrogen donors and cost-effective catalysts is desirable. Here electrocatalytic quinoline hydrogenation to 1,2,3,4-tetrahydroquinolines is reported with water over a fluorine-modified cobalt.
Collapse
|
27
|
Saha D, Taily IM, Banerjee N, Banerjee P. Electricity mediated [3+2]-cycloaddition of N-sulfonylcyclopropanes with olefins via N-centered radical intermediates: access to cyclopentane analogs. Chem Commun (Camb) 2022; 58:5459-5462. [PMID: 35352071 DOI: 10.1039/d2cc00761d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An external oxidant free electrochemical strategy is designed towards the β-scission of strained C-C bonds in cyclopropylamine. Moreover, the mechanistic studies ascertained that the methodology encompasses the N-center radical (NCRs) route and provides access to di- or tri-substituted cyclopentane analogs.
Collapse
Affiliation(s)
- Debarshi Saha
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Nakshatra Banerjee
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Lab no. 406, Department of Chemistry, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab-140001, India.
| |
Collapse
|
28
|
Yang J, Zeng T, Yan K, Qin Z, Wen J. Direct Synthesis of Alkylthioimidazoles: One‐Pot Three‐Component Cross‐Coupling Mediated by Paired Electrolysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Ting Zeng
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| | - Zonghui Qin
- College of Chemistry and Chemical Engineering Yangtze Normal University Fuling 408000 Chongqing People's Republic of China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University 273165 Qufu Shandong People's Republic of China
| |
Collapse
|
29
|
A green protocol for the electrochemical synthesis of a fluorescent dye with antibacterial activity from imipramine oxidation. Sci Rep 2022; 12:4921. [PMID: 35318352 PMCID: PMC8941072 DOI: 10.1038/s41598-022-08770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/02/2022] [Indexed: 12/31/2022] Open
Abstract
Electrochemical oxidation of imipramine (IMP) has been studied in aqueous solutions by cyclic voltammetry and controlled-potential coulometry techniques. Our voltammetric results show a complex behavior for oxidation of IMP at different pH values. In this study, we focused our attention on the electrochemical oxidation of IMP at a pH of about 5. Under these conditions, our results show that the oxidation of IMP leads to the formation of a unique dimer of IMP (DIMP). The structure of synthesized dimer is fully characterized by UV-visible, FTIR, 1H NMR, 13C NMR and mass spectrometry techniques. It seems that the first step in the oxidation of IMP is the cleavage of the alkyl group (formation of IMPH). After this, a domino oxidation-hydroxylation-dimerization-oxidation reaction, converts IMPH to (E)-10,10',11,11'-tetrahydro-[2,2'-bidibenzo[b,f]azepinylidene]-1,1'(5H,5'H)-dione (DIMP). The synthesis of DIMP is performed in an aqueous solution under mild conditions, without the need for any catalyst or oxidant. Based on our electrochemical findings as well as the identification of the final product, a possible reaction mechanism for IMP oxidation has been proposed. Conjugated double bonds in the DIMP structure cause the compound to become colored with sufficient fluorescence activity (excitation wave-length 535 nm and emission wave-length 625 nm). Moreover, DIMP has been evaluated for in vitro antibacterial. The antibacterial tests indicated that DIMP showed good antibacterial performance against all examined gram-positive and gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Shigella sonnei).
Collapse
|
30
|
Papanikolaou G, Centi G, Perathoner S, Lanzafame P. Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catal 2022; 12:2861-2876. [PMID: 35280435 PMCID: PMC8902748 DOI: 10.1021/acscatal.2c00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/29/2022]
Abstract
![]()
The prospects, needs
and limits in current approaches in catalysis
to accelerate the transition to e-chemistry, where
this term indicates a fossil fuel-free chemical production, are discussed.
It is suggested that e-chemistry is a necessary element
of the transformation to meet the targets of net zero emissions by
year 2050 and that this conversion from the current petrochemistry
is feasible. However, the acceleration of the development of catalytic
technologies based on the use of renewable energy sources (indicated
as reactive catalysis) is necessary, evidencing that these are part
of a system of changes and thus should be assessed from this perspective.
However, it is perceived that the current studies in the area are
not properly addressing the needs to develop the catalytic technologies
required for e-chemistry, presenting a series of
relevant aspects and directions in which research should be focused
to develop the framework system transformation necessary to implement e-chemistry.
Collapse
Affiliation(s)
- Georgia Papanikolaou
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Siglinda Perathoner
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Paola Lanzafame
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
31
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution-Phase Chemical Reaction. Angew Chem Int Ed Engl 2022; 61:e202116351. [PMID: 34982848 PMCID: PMC8863644 DOI: 10.1002/anie.202116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Electrochemistry offers a variety of novel means by which selectivity can be introduced into synthetic organic transformations. In the work reported, it is shown how methods used to confine chemical reactions to specific sites on a microelectrode array can also be used to confine a preparative reaction to the surface of an electrode inserted into a bulk reaction solution. In so doing, the surface of a modified electrode can be used to introduce new selectivity into a preparative reaction that is not observed in the absence of either the modified electrode surface or the effort to confine the reaction to that surface. The observed selectivity can be optimized in the same way that confinement is optimized on an array and is dependent on the nature of the functionalized surface.
Collapse
Affiliation(s)
- Enqi Feng
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Qiwei Jing
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Kevin D. Moeller
- Department of Chemistry, Washington University, St. Louis, MO 63130,
| |
Collapse
|
32
|
Feng E, Jing Q, Moeller KD. Lessons from an Array: Using an Electrode Surface to Control the Selectivity of a Solution‐Phase Chemical Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Enqi Feng
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Qiwei Jing
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
33
|
Zhang M, Shi Y, zhang J. A Convergent Paired Electrolysis Strategy Enables Cross-Coupling of Methylarenes with Imines. Org Chem Front 2022. [DOI: 10.1039/d2qo00085g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we have developed a metal-free convergent paired electrolysis strategy for α-benzyl amine synthesis from readily available imines and methylarenes, taking advantage of both anodic oxidation and cathodic...
Collapse
|
34
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|