1
|
Yue S, Wang NK, Chen JP, Su C, Li H, Gong JS, Xu ZH, Shi JS. Enhanced Biosynthesis of 6'-Sialyllactose in Escherichia coli via Systematic Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12383-12391. [PMID: 40327450 DOI: 10.1021/acs.jafc.5c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
6'-Sialyllactose (6'-SL), a sialylated oligosaccharide belonging to human milk oligosaccharides (HMOs), finds extensive applications in food, pharmaceuticals, cosmetics, and particularly in infant nutrition and dietary supplements. In this study, Escherichia coli K12 MG1655 was subjected to metabolic engineering to enhance 6'-SL biosynthesis. Initial pathway optimization involved the deletion of competing metabolic pathway genes (nanATEK, nagAB, and lacZ). Following overexpression of NmCSS and Pd2,6ST, an initial titer of 0.98 g/L was achieved. Subsequent combinatorial expression of heterologous enzymes from diverse microbial sources increased the yield to 1.26 g/L. Through systematic optimization of promoter strength and ribosome binding site (RBS) elements, the 6'-SL titer was further elevated to 2.41 g/L. Implementation of structure-guided mutagenesis on both key enzymes resulted in a significant yield improvement to 4.27 g/L. Final engineering strategies included overexpression of rate-limiting enzymes in the CTP biosynthesis pathway. The engineered strain demonstrated a production capacity of 4.92 g/L in shake-flask cultures. We transferred the strain to a 5-L fermenter and achieved a final 6'-SL production of 12.82 g/L after 76 h of cultivation, demonstrating a 13-fold enhancement compared to the initial shake-flask culture.
Collapse
Affiliation(s)
- Song Yue
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Nan-Kai Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Jin-Ping Chen
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
- Institute of Future Food Technology, JITRI, Yixing 214200, PR China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
2
|
Ma Y, Liu Y, Cao C, Peng J, Jiang Y, Li T. Host-Guest Chemistry-Mediated Biomimetic Chemoenzymatic Synthesis of Complex Glycosphingolipids. J Am Chem Soc 2025; 147:6974-6982. [PMID: 39933159 DOI: 10.1021/jacs.4c17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Glycosphingolipids (GSLs) are amphipathic complex biomolecules constituted of hydrophilic glycans covalently linked to hydrophobic lipids via glycosidic bonds. GSLs are widely distributed in cells and tissues, where they play crucial roles in various biological functions and disease processes. However, the heterogeneity and complexity of GSLs make it difficult to explore their precise biofunctions due to obstacles in obtaining well-defined structures. Herein, we report a host-guest-chemistry-mediated biomimetic chemoenzymatic approach for the efficient synthesis of diverse complex GSLs. A key feature of this approach is that the use of methyl-β-cyclodextrin enables amphipathic glycolipids forming water-soluble inclusion complexes to improve their solubility in aqueous media, thereby facilitating enzyme-catalyzed reactions. The power and applicability of our approach are demonstrated by the streamlined synthesis of biologically important globo-, ganglio-, neolacto-, and lacto-series GSLs library containing 20 neutral and acidic glycolipids with different fucosylation and sialylation patterns. The developed method will open new avenues to easily access a wide range of complex GSLs for biomedical applications.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiarong Peng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Mamirgova ZZ, Zinin AI, Chinarev AA, Chizhov AO, Birin KP, Bovin NV, Kononov LO. Destabilization of Glycosyl Cation by an Electron-Withdrawing Substituent at C-5 Makes Sialylation Reaction More α-Stereoselective. J Org Chem 2025; 90:931-937. [PMID: 39791133 DOI: 10.1021/acs.joc.4c02759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Comparison of the reactivity of sialyl chlorides and bromides based on N-acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and i-PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the SN1-like reaction pathway unfavorable. A change to the SN2-like reaction pathway ensures preferential formation of the α-glycoside.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Alexander A Chinarev
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russian Federation
| | - Alexander O Chizhov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| | - Kirill P Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky prosp. 31-4, Moscow 119071, Russian Federation
| | - Nicolai V Bovin
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russian Federation
| | - Leonid O Kononov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Xu Y, Montgomery J. Synthesis of 2-Amino-2-deoxy Sugars via Boron-Catalyzed Coupling of Glycosyl Fluorides and Silyl Ether Acceptors. Org Lett 2024; 26:7474-7478. [PMID: 39185923 PMCID: PMC11407749 DOI: 10.1021/acs.orglett.4c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although aminosugars are important components in a variety of bioactive molecules, their stereoselective formation is made challenging by the Lewis basic nature of amino substituents. Additionally, the use of N-acyl protecting groups is often problematic due to the competing formation of oxazolines during the glycosylation of 2-aminosugar derivatives. Herein, we report a boron-catalyzed strategy utilizing silyl ether glycosyl acceptors and 2-aminosugar donors that employs the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group for the C2 amino functionality in glycosyl fluorides. This modification allows for operationally simple room-temperature glycosylations and features a rapid reaction profile that addresses some of the limitations in the synthesis of 2-amino-2-deoxy sugar-containing glycosides. Tailoring the order of reactivity of the silyl acceptors enables one-pot iterative glycosylations, thus streamlining the synthesis of complex oligosaccharides while allowing fewer intermediates and purification steps.
Collapse
Affiliation(s)
- Yishu Xu
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Xu Z, Liu Y, Liu J, Ma W, Zhang Z, Chapla DG, Wen L, Moremen KW, Yi W, Li T. Integrated chemoenzymatic synthesis of a comprehensive sulfated ganglioside glycan library to decipher functional sulfoglycomics and sialoglycomics. Nat Chem 2024; 16:881-892. [PMID: 38844638 DOI: 10.1038/s41557-024-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024]
Abstract
Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein-carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure-function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.
Collapse
Affiliation(s)
- Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yating Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jialin Liu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhumin Zhang
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Liuqing Wen
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Liu Y, Yan M, Wang M, Luo S, Wang S, Luo Y, Xu Z, Ma W, Wen L, Li T. Stereoconvergent and Chemoenzymatic Synthesis of Tumor-Associated Glycolipid Disialosyl Globopentaosylceramide for Probing the Binding Affinity of Siglec-7. ACS CENTRAL SCIENCE 2024; 10:417-425. [PMID: 38435515 PMCID: PMC10906248 DOI: 10.1021/acscentsci.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is a tumor-associated complex glycosphingolipid. However, the accessibility of structurally well-defined DSGb5 for precise biological functional studies remains challenging. Herein, we describe the first total synthesis of DSGb5 glycolipid by an efficient chemoenzymatic approach. A Gb5 pentasaccharide-sphingosine was chemically synthesized by a convergent and stereocontrolled [2 + 3] method using an oxazoline disaccharide donor to exclusively form β-anomeric linkage. After investigating the substrate specificity of different sialyltransferases, regio- and stereoselective installment of two sialic acids was achieved by two sequential enzyme-catalyzed reactions using α2,3-sialyltransferase Cst-I and α2,6-sialyltransferase ST6GalNAc5. A unique aspect of the approach is that methyl-β-cyclodextrin-assisted enzymatic α2,6-sialylation of glycolipid substrate enables installment of the challenging internal α2,6-linked sialoside to synthesize DSGb5 glycosphingolipid. Surface plasmon resonance studies indicate that DSGb5 glycolipid exhibits better binding affinity for Siglec-7 than the oligosaccharide moiety of DSGb5. The binding results suggest that the ceramide moiety of DSGb5 facilitates its binding by presenting multivalent interactions of glycan epitope for the recognition of Siglec-7.
Collapse
Affiliation(s)
- Yating Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Mengkun Yan
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Shasha Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yawen Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojia Xu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Wen
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Radwan M, Jana M, Cairo CW. Facile synthesis of C5-azido derivatives of thiosialosides and 2,3-dehydro-5-N-acetylneuraminic acid (DANA). Carbohydr Res 2024; 536:109013. [PMID: 38185031 DOI: 10.1016/j.carres.2023.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Neuraminic acid (Neu5Ac, also known as sialic acid) is an important monosaccharide found in glycoproteins and glycolipids which plays a vital role in regulation of physiological functions and pathological conditions. The study of sialoglycans has benefitted from the development of glycomimetic probes and inhibitors for proteins and enzymes that interact with and modify neuraminic acid in glycan chains. Methods to access sialoside intermediates with high yield are needed to facilitate the design of new targets. Here, we report the synthesis of C5-azido thiosialosides using a mild method to deprotect the C5-acetamido functional group followed by the use of a diazo-transfer reagent. We examined two diazo-transfer strategies and compared their yields and tolerance of acetate protecting groups. The same methods and comparisons were also performed for the 2,3-dehydro-5-N-acetylneuraminic acid (DANA) scaffold which is commonly used to generate inhibitors of neuraminidase (sialidase) enzymes. We found that C5-azido derivatives of both thiosialosides and DANA could be produced in five or six steps with yields up to 76 % and 83 %, respectively. Diazo-transfer reagents compared in this study were trifluoromethanesulfonyl azide (TfN3) and imidazole-1-sulfonyl azide (ImzSO2N3). We found that both reagents were compatible with this method and showed comparable yields. Finally, we show that C5-azido derivatives can help to avoid O, N-acyl protecting group migration which was observed in C5-NHAc analogs.
Collapse
Affiliation(s)
- Mostafa Radwan
- Department of Chemistry, University of Alberta, Edmonton Alberta, T6G 2G2, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton Alberta, T6G 2G2, Canada.
| |
Collapse
|
8
|
Mamirgova ZZ, Zinin AI, Chizhov AO, Kononov LO. Synthesis of sialyl halides with various acyl protective groups. Carbohydr Res 2024; 536:109033. [PMID: 38295530 DOI: 10.1016/j.carres.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glycosyl halides are historically one of the first glycosyl donors used in glycosylation reactions, and interest in glycosylation reactions involving this class of glycosyl donors is currently increasing. New methods for their activation have been proposed and effective syntheses of oligosaccharides with their participation have been developed. At the same time, the possibilities of using these approaches to the synthesis of sialosides are restricted by the limited diversity of known sialyl halides (previously, mainly sialyl chlorides, less often sialyl bromides and sialyl fluorides, with acetyl (Ac) groups at the oxygen atoms and AcNH, Ac2N and N3 groups at C-5 were used). This work describes the synthesis of six new N-acetyl- and N-trifluoroacetyl-sialyl chlorides and bromides with O-chloroacetyl and O-trifluoroacetyl protective groups. Preparation of N,O-trifluoroacetyl protected derivatives was made possible due to development of the synthesis of sialic acid methyl ester pentaol with N-trifluoroacetyl group.
Collapse
Affiliation(s)
- Zarina Z Mamirgova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Russian Federation.
| |
Collapse
|
9
|
Ando H, Komura N. Recent progress in the synthesis of glycosphingolipids. Curr Opin Chem Biol 2024; 78:102423. [PMID: 38184907 DOI: 10.1016/j.cbpa.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
To accelerate the biological study and application of the diverse functions of glycosphingolipids (GSLs), the production of structurally defined GSLs has been greatly demanded. In this review, we focus on the recent developments in the chemical and chemoenzymatic synthesis of GSLs. In the chemical synthesis section, the syntheses based on glucosyl ceramide cassette, late-stage sialylation, and diversity-oriented strategies for GSLs or ganglioside synthesis are highlighted, which delivered terpioside B, fluorescent sialyl lactotetraosyl ceramide, and analogs of lacto-ganglio-series GSLs, respectively. In the chemoenzymatic synthesis section, the synthesis of ganglioside GM1 by multistep one-pot multienzyme method and the total synthesis of highly complex ganglioside LLG-5 using a water-soluble lactosyl ceramide as a key substrate for enzymatic sialylation are described.
Collapse
Affiliation(s)
- Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
10
|
Orlova AV, Malysheva NN, Panova MV, Podvalnyy NM, Medvedev MG, Kononov LO. Comparison of glycosyl donors: a supramer approach. Beilstein J Org Chem 2024; 20:181-192. [PMID: 38318458 PMCID: PMC10840533 DOI: 10.3762/bjoc.20.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
The development of new methods for chemical glycosylation commonly includes comparison of various glycosyl donors. An attempted comparison of chemical properties of two sialic acid-based thioglycoside glycosyl donors, differing only in the substituent at O-9 (trifluoroacetyl vs chloroacetyl), at different concentrations (0.05 and 0.15 mol·L-1) led to mutually excluding conclusions concerning their relative reactivity and selectivity, which prevented us from revealing a possible influence of remote protective groups at O-9 on glycosylation outcome. According to the results of the supramer analysis of the reaction solutions, this issue might be related to the formation of supramers of glycosyl donors differing in structure hence chemical properties. These results seem to imply that comparison of chemical properties of different glycosyl donors may not be as simple and straightforward as it is usually considered.
Collapse
Affiliation(s)
- Anna V Orlova
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Nelly N Malysheva
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Maria V Panova
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Nikita M Podvalnyy
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Michael G Medvedev
- Theoretical Chemistry Group, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Leonid O Kononov
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| |
Collapse
|
11
|
Fukase K, Manabe Y, Shimoyama A. Diacetyl strategy for synthesis of NHAc containing glycans: enhancing glycosylation reactivity via diacetyl imide protection. Front Chem 2023; 11:1319883. [PMID: 38116104 PMCID: PMC10728286 DOI: 10.3389/fchem.2023.1319883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The presence of NHAc groups in the substrates (both glycosyl donors and acceptors) significantly reduced the reactivity of glycosylation. This decrease was attributed to the NHAc groups forming intermolecular hydrogen bonds by the NHAc groups, thereby reducing molecular mobility. Hence, a diacetyl strategy involving the temporary conversion of NHAc to diacetyl imide (NAc2) was developed for the synthesis of NHAc-containing glycans. This strategy has two significant advantages for oligosaccharide synthesis. The NAc2 protection of NHAc substantially enhances the rate of glycosylation reactions, resulting in improved yields. Moreover, NAc2 can be readily reverted to NHAc by the simple removal of one acetyl group under mild basic conditions, obviating the necessity for treating the polar amino group. We have achieved the efficient synthesis of oligosaccharides containing GlcNHAc and N-glycans containing sialic acid using the diacetyl strategy.
Collapse
Affiliation(s)
- Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Rivollier P, Samain E, Armand S, Jeacomine I, Richard E, Fort S. Synthesis of Neuraminidase-Resistant Sialyllactose Mimetics from N-Acyl Mannosamines using Metabolically Engineered Escherichia coli. Chemistry 2023; 29:e202301555. [PMID: 37294058 DOI: 10.1002/chem.202301555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Herein, we describe the efficient gram-scale synthesis of α2,3- and α2,6-sialyllactose oligosaccharides as well as mimetics from N-acyl mannosamines and lactose in metabolically engineered bacterial cells grown at high cell density. We designed new Escherichia coli strains co-expressing sialic acid synthase and N-acylneuraminate cytidylyltransferase from Campylobacter jejuni together with the α2,3-sialyltransferase from Neisseria meningitidis or the α2,6-sialyltransferase from Photobacterium sp. JT-ISH-224. Using their mannose transporter, these new strains actively internalized N-acetylmannosamine (ManNAc) and its N-propanoyl (N-Prop), N-butanoyl (N-But) and N-phenylacetyl (N-PhAc) analogs and converted them into the corresponding sialylated oligosaccharides, with overall yields between 10 % and 39 % (200-700 mg.L-1 of culture). The three α2,6-sialyllactose analogs showed similar binding affinity for Sambucus nigra SNA-I lectin as for the natural oligosaccharide. They also proved to be stable competitive inhibitors of Vibrio cholerae neuraminidase. These N-acyl sialosides therefore hold promise for the development of anti-adhesion therapy against influenza viral infections.
Collapse
Affiliation(s)
- Paul Rivollier
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Eric Samain
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | | | | | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| |
Collapse
|
13
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Bose P, Jaiswal MK, Singh SK, Singh RK, Tiwari VK. Growing impact of sialic acid-containing glycans in future drug discovery. Carbohydr Res 2023; 527:108804. [PMID: 37031650 DOI: 10.1016/j.carres.2023.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.
Collapse
|
15
|
Luo S, Liu Y, Hao T, Ma W, Luo Y, Wang S, Xu Z, Hu C, Wen L, Li T. Chemoenzymatic Total Synthesis of Haemophilus ducreyi Lipooligosaccharide Core Octasaccharides Containing Natural and Unnatural Sialic Acids. Org Lett 2023; 25:2312-2317. [PMID: 36972419 DOI: 10.1021/acs.orglett.3c00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The first total synthesis of Haemophilus ducreyi lipooligosaccharide core octasaccharides containing natural and unnatural sialic acids has been achieved by an efficient chemoenzymatic approach. A highly convergent [3 + 3] coupling strategy was developed to chemically assemble a unique hexasaccharide bearing multiple rare higher-carbon sugars d-glycero-d-manno-heptose (d,d-Hep), l-glycero-d-manno-heptose (l,d-Hep), and 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo). Key features include sequential one-pot glycosylations for oligosaccharide assembly and the construction of the challenging α-(1 → 5)-linked Hep-Kdo glycosidic bond by gold-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate donor. Furthermore, the sequential enzyme-catalyzed regio- and stereoselective introduction of a galactose residue using β-1,4-galactosyltransferase and different sialic acids using a one-pot multienzyme sialylation system was efficiently accomplished to provide the target octasaccharides.
Collapse
Affiliation(s)
- Shiwei Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yating Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tianhui Hao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chaoyu Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Abstract
Synthetic methodologies for gangliosides have evolved over the past three decades. The strategies for constructing ganglioside skeletons can generally be classified as late-stage ceramide coupling, the glucosyl ceramide cassette strategy, or late-stage sialylation. Using these synthetic strategies, numerous natural gangliosides and their structural analogs, including functional probes, have been synthesized. This chapter describes the synthetic strategies for gangliosides and provides examples of the total synthesis of several gangliosides using each strategy.
Collapse
Affiliation(s)
- Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
| |
Collapse
|
17
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
18
|
The first example of unpromoted sialylation of a secondary alcohol. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
20
|
Zhao X, Huang Y, Zhou S, Ao J, Cai H, Tanaka K, Ito Y, Ishiwata A, Ding F. Recent Chemical and Chemoenzymatic Strategies to Complex-Type N-Glycans. Front Chem 2022; 10:880128. [PMID: 35720985 PMCID: PMC9204336 DOI: 10.3389/fchem.2022.880128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Glycosylation is one of the major forms of protein post-translational modification. N-glycans attached to proteins by covalent bonds play an indispensable role in intercellular interaction and immune function. In human bodies, most of the cell surface glycoproteins and secreted glycopeptides are modified with complex-type N-glycans. Thus, for analytical or medicinal purposes, efficient and universal methods to provide homogeneous complex-type N-glycans have been an urgent need. Despite the extremely complicated structures, tremendous progress in the synthesis of N-glycans has been achieved. On one hand, chemical strategies are shown to be effective to prepare core oligosaccharides of N-glycans by focusing on stereoselective glycosylations such as β-mannosylation and α-sialylation, as well as the methodology of the N-glycan assembly. On the other hand, chemoenzymatic strategies have also become increasingly powerful in recent years. This review attempts to highlight the very recent advancements in chemical and chemoenzymatic strategies for eukaryotic complex-type N-glycans.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hui Cai, ; Akihiro Ishiwata, ; Feiqing Ding,
| |
Collapse
|
21
|
Ma W, Deng Y, Xu Z, Liu X, Chapla DG, Moremen KW, Wen L, Li T. Integrated Chemoenzymatic Approach to Streamline the Assembly of Complex Glycopeptides in the Liquid Phase. J Am Chem Soc 2022; 144:9057-9065. [PMID: 35544340 DOI: 10.1021/jacs.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosylation of proteins is a complicated post-translational modification. Despite the significant progress in glycoproteomics, accurate functions of glycoproteins are still ambiguous owing to the difficulty in obtaining homogeneous glycopeptides or glycoproteins. Here, we describe a streamlined chemoenzymatic method to prepare complex glycopeptides by integrating hydrophobic tag-supported chemical synthesis and enzymatic glycosylations. The hydrophobic tag is utilized to facilitate peptide chain elongation in the liquid phase and expeditious product separation. After removal of the tag, a series of glycans are installed on the peptides via efficient glycosyltransferase-catalyzed reactions. The general applicability and robustness of this approach are exemplified by efficient preparation of 16 well-defined SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated glucagon-like peptide-1. Our developed approach will open up a new range of easy access to various complex glycopeptides of biological importance.
Collapse
Affiliation(s)
- Wenjing Ma
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Takahashi M, Komura N, Yoshida Y, Yamaguchi E, Hasegawa A, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem Biol 2022; 3:868-885. [PMID: 35866169 PMCID: PMC9257605 DOI: 10.1039/d2cb00083k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are a family of sialic-acid-containing glycosphingolipids that form dynamic domains (lipid rafts) with proteins in cell plasma membranes (PMs), and are involved in various biological processes. The dynamic behavior...
Collapse
Affiliation(s)
- Maina Takahashi
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Yukako Yoshida
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Eriko Yamaguchi
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Ami Hasegawa
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hide-Nori Tanaka
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Akihiro Imamura
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hideharu Ishida
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kenichi G N Suzuki
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
23
|
Ando H, Komura N, Tanaka HN, Imamura A, Ishida H. Chemical synthesis of sialoglyco-architectures. Adv Carbohydr Chem Biochem 2022; 81:31-56. [DOI: 10.1016/bs.accb.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Xu Z, Deng Y, Zhang Z, Ma W, Li W, Wen L, Li T. Diversity-Oriented Chemoenzymatic Synthesis of Sulfated and Nonsulfated Core 2 O-GalNAc Glycans. J Org Chem 2021; 86:10819-10828. [PMID: 34254798 DOI: 10.1021/acs.joc.1c01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A diversity-oriented chemoenzymatic approach for the collective preparation of sulfated core 2 O-GalNAc glycans and their nonsulfated counterparts was described. A sulfated trisaccharide and a nonsulfated trisaccharide were chemically synthesized by combining flexible protected group manipulations and sequential one-pot glycosylations. The divergent enzymatic extension of these two trisaccharides, using a panel of robust glycosyltransferases that can recognize sulfated substrates and differentiating the branches with specifically designed glycosylation sequences to achieve regioselective sialylation, provided 36 structurally well-defined O-GalNAc glycans.
Collapse
Affiliation(s)
- Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|