1
|
Bisarya A, Kathuria L, Das K, Yasmin E, Jasra RV, Dhole S, Kumar A. State-of-the-art advances in homogeneous molecular catalysis for the Guerbet upgrading of bio-ethanol to fuel-grade bio-butanol. Chem Commun (Camb) 2025; 61:2906-2925. [PMID: 39835652 DOI: 10.1039/d4cc05931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The upgrading of ethanol to n-butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, n-butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption. These features position n-butanol as a promising alternative to ethanol in the future of biodiesel. This review article delves into the cutting-edge advancements in upgrading ethanol to butanol, highlighting the critical importance of this transformation in enhancing the value and practical application of biofuels. While traditional methods for making butanol rely heavily on fossil fuels, those that employ ethanol as a starting material are dominated by heterogeneous catalysis, which is limited by the requirement of high temperatures and a lack of selectivity. Homogeneous catalysts have been pivotal in enhancing the efficiency and selectivity of this conversion, owing to their unique mode of operation at the molecular level. A comprehensive review of the various homogeneous catalytic processes employed in the transformation of feedstock-agnostic bio-ethanol to fuel-grade bio-n-butanol is provided here, with a major focus on the key advancements in catalyst design, reaction conditions and mechanisms that have significantly improved the efficiency and selectivity of these Guerbet reactions.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Kanu Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Eileen Yasmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Reliance Industries Limited, R&D Centre, Vadodara Manufacturing Division, Vadodara - 391346, Gujarat, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No. 144 A, Sector 7, PCNTDA Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
2
|
Pan Y, Tang C, Zeng X, Zhu Y, Huang W, Du W. Fe-Catalyzed Hydrocyclization of Inactivated Alkenes to Synthesize Ring-Fused 2,3-Dihydroquinazolinone. J Org Chem 2025; 90:1507-1513. [PMID: 39840717 DOI: 10.1021/acs.joc.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A Fe-catalyzed hydrocyclization reaction of unactivated alkenes was developed, utilizing PhSiH3 as the hydrogen source, yielding 2,3-dihydroquinazolinone (DHQZ) derivatives in moderate to good yields. Notably, when the substrate was switched to N-cyano-N-(2-(prop-1-en-2-yl)phenyl)benzamides, the reaction yielded only the unreduced products. Mechanistic studies revealed that the intramolecular addition of the in situ formed radical to the unactivated alkene results in the formation of the fused ring.
Collapse
Affiliation(s)
- Youlu Pan
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
| | - Chaonan Tang
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
| | - Xianming Zeng
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
| | - Yingchen Zhu
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
- Center of Safety Evaluation and Research, Hangzhou Medical College, 587 Binkang Road, Hangzhou 310051, PR China
| | - Wenting Du
- School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China
| |
Collapse
|
3
|
Babu R, Suresh AK, Kumar R, Balaraman E. Dehydrogenative Coupling of Alcohols with Hydrazines under Nickel Catalysis. J Org Chem 2025; 90:323-343. [PMID: 39707971 DOI: 10.1021/acs.joc.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The development of efficient and robust catalytic systems based on earth-abundant transition metals for fundamentally new transformations is crucial for sustainable chemical synthesis. Herein, an effective and selective Ni-catalyzed dehydrogenative coupling of alcohols with hydrazines with the liberation of ammonia gas is reported. Although several methods were documented for the N-alkylation reaction, the present strategy is conceptually novel, and the reaction proceeds through a pathway involving N-N bond cleavage of phenylhydrazine followed by hydrogen autotransfer. This unprecedented method demonstrates a wide substrate scope, allowing for the synthesis of C-N coupled products from arylhydrazines using various types of alcohols, including aryl, fused aryl, heteroaromatic, cyclic, and aliphatic alcohols, both primary and secondary alcohols. The present catalytic approach was expanded to facilitate selective deuterium incorporation reactions by employing deuterated alcohols at the α-methyl position of the resulting N-alkylated products. It is noteworthy that we have broadened the applicability of the current catalytic systems to facilitate the ketazine synthesis of hydrazine monohydrate by employing secondary alcohols. The reaction utilizes an inexpensive, abundant, and renewable alcohol that serves as both an alkylating and (transfer) hydrogenating agent. Kinetic studies reveal that the reaction rate depends on the concentration of arylhydrazine and the nickel catalyst, following fractional order.
Collapse
Affiliation(s)
- Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Rohit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India
- DST-Nodal Center for APIs and KSM Production under the Therapeutic Chemicals Program, IISER-Tirupati, Tirupati 517619, India
| |
Collapse
|
4
|
Pennamuthiriyan A, Rengan R, Malecki JG. Sustainable Synthesis of Substituted 1,3,5-Triazines by [ONO]-Pincer-Supported Nickel(II) Complexes via an Acceptorless Dehydrogenative Coupling Strategy. J Org Chem 2025; 90:183-196. [PMID: 39695346 DOI: 10.1021/acs.joc.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A facile, cost-effective, and sustainable synthesis of substituted triazines from primary alcohols by newly synthesized nickel pincer-type complexes (1-3) has been described. Herein, we report the synthesis of a set of three well-defined Ni(II) O^N^O pincer-type complexes, structurally characterized by analytical, spectral, and X-ray diffraction techniques. Further, the nickel complexes are explored as efficient catalysts (4 mol %) for the construction of 2,4,6-substituted 1,3,5-triazines from readily available alcohols via an acceptorless dehydrogenative coupling (ADC) strategy. A wide range of substituted triazine derivatives (33 examples) has been synthesized from the coupling of alcohols and benzamidine/guanidine hydrochloride with a maximum isolated yield of 92% under mild conditions, with eco-friendly H2O and H2 gas as the only byproducts. A plausible mechanism has been proposed based on a sequence of control experiments. Interestingly, the short synthesis of the antiulcer drug irsogladine and the large-scale synthesis of 2,4-diphenyl-6-(p-tolyl)-1,3,5-triazine highlight the convenience of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland
| |
Collapse
|
5
|
Maji A, Singh O, Sharma K, Kumari S, Ghosh K. Well Defined Phosphine Free Ni-Catalyzed Dehydrogenation of Secondary Alcohols for the Synthesis of Ketones and Ketazines. Chem Asian J 2024; 19:e202400818. [PMID: 39363755 DOI: 10.1002/asia.202400818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
In this work, we unveil a novel synthesis of bench stable Ni (II) complexes supported by tetradentate Schiff-base ligands and the complexes were devoid of any phosphine or phosphine-based ligand. These Ni-complexes were successfully applied for the dehydrogenation of secondary alcohols for ketone and ketazine syntheses. Secondary alcohols with different functional groups were well tolerated during catalytic cycle. Moreover, we successfully extended this protocol for the synthesis of biologically significant ketones and ketazines. On the basis of various control experiments, probable reaction pathway was proposed, and an acceptorless alcohol dehydrogenation mechanism was suggested.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ovender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Keshav Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
6
|
Paul B, Panja D, Kundu S. Synthesis of N-heterocycles through alcohol dehydrogenative coupling. Nat Protoc 2024; 19:3640-3676. [PMID: 39174661 DOI: 10.1038/s41596-024-01031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/24/2024] [Indexed: 08/24/2024]
Abstract
Nitrogen heterocycles are found in the structures of many biologically important compounds, as well as materials used in the synthesis of fine chemicals. Notably, ~59% of US Food and Drug Administration-approved small-molecule drugs contain nitrogen heterocycles. It is therefore meaningful to explore greener or more sustainable methods for their synthesis. The use of alcohols as reagents is attractive as they can be readily obtained from biomass derived natural resources. In the last two decades, alcohol dehydrogenative coupling reaction to synthesize various heterocycles were extensively explored which furnished hydrogen (H2) and water (H2O) as the two greener byproducts. In this protocol, we describe several efficient catalytic transformations to synthesize quinolines, 1,8-naphthyridines, quinoxalines, quinazolines, pyrimidines, benzimidazoles, pyrroles and pyridines, using alcohol as starting materials. We also describe the synthesis of several homogeneous iridium/ruthenium catalysts and heterogeneous cobalt/copper catalysts that can be used in these transformations. The reaction setup is simple; in a Schlenk/reaction tube with magnetic stir-bar, alcohol, corresponding coupling reagents (nucleophiles), catalyst, base and solvent (water or organic solvent such as toluene, dioxane or p-xylene) are added. The reaction mixture is refluxed at the specified temperature (110-150 °C)-either in air or under argon-to furnish these heterocycles. Synthesis of the catalysts takes 3-5 h and the coupling reactions take 4-5 h depending on the target product. The cobalt- and copper-based heterogeneous catalytic systems displayed an good catalyst recyclability.
Collapse
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry, University of Oxford, Oxford, UK.
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.
| | - Dibyajyoti Panja
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur (IITK), Kanpur, India.
| |
Collapse
|
7
|
Jiang HX, Wang ZX. Palladium-Catalyzed Reaction of Indolines with Dihydropyrroles: Access to N-Alkylated Indoles. J Org Chem 2024; 89:9990-10003. [PMID: 38959370 DOI: 10.1021/acs.joc.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Palladium-catalyzed reaction of indolines with 1-acyl-2,3-dihydro-1H-pyrroles or 1-acyl-2,5-dihydro-1H-pyrroles in air produces N-alkylated indoles. A combination of Pd(CH3CN)2Cl2 and dppf effectively catalyzes the reaction of 1-acyl-2,3-dihydro-1H-pyrroles, and the combination of Pd(CH3CN)2Cl2 and dcypf is more effective for the reaction of 1-acyl-2,5-dihydro-1H-pyrroles. The method has a wide scope of substrates and shows good compatibility of functional groups.
Collapse
Affiliation(s)
- Hong-Xia Jiang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Sarkar K, Kumar P, Mule A, Maji B. Divergent Synthesis of Pyrazoles via Manganese Pincer Complex Catalyzed Acceptorless Dehydrogenative Coupling Reactions. Chemistry 2024; 30:e202401105. [PMID: 38655822 DOI: 10.1002/chem.202401105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
This report detailed the synthesis of multi-substituted pyrazoles through the acceptorless dehydrogenative coupling (ADC) reaction catalyzed by a well-defined manganese(I)-pincer complex. Symmetrically substituted pyrazoles were synthesized by reacting 1,3-diols with hydrazines. Unsymmetrically substituted pyrazoles were selectively made via the ADC of primary alcohols with methyl hydrazones. Water and hydrogen are liberated as the green byproducts. The endurance of these methodologies has been presented by producing 30 substrates with varied functionalities. Model reactions were scaled up to demonstrate practicability. The reaction rate and order were measured to transparent the involvement of the reagents during catalysis. Control experiments elucidated the plausible reaction mechanisms.
Collapse
Affiliation(s)
- Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Arjun Mule
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
9
|
Mahato J, Bera PS, Saha TK. Synthesis of imines from the coupling reaction of alcohols and amines catalyzed by phosphine-free cobalt(II) complexes. Org Biomol Chem 2024; 22:4528-4535. [PMID: 38752768 DOI: 10.1039/d4ob00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Phosphine-free, air stable cobalt(II) based complexes (1a and 1b) consisting of ligands L1H2 and L2H2 (L1H2 = N,N'-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol and L2H2 = N,N'-bis(4-diethylaminosalicylidene)-4,5-dichloro-1,2-phenylenediamine) were synthesized and utilized as catalysts in the coupling reaction of alcohols with amines into imines following an acceptorless dehydrogenative pathway. The reactions were carried out in the presence of t-BuOK base with low catalyst loading (1 mol%) in an open atmosphere. The corresponding imines were isolated in moderate to excellent yields. The methodology was screened with different substituted alcohols and amines. The proposed mechanistic pathway of this reaction was ascertained through intermediate mass and 1H NMR analyses. Most of the previously reported 3d transition metal catalysts used in imine synthesis reactions have a phosphine ligand environment, and the reactions were performed under inert conditions. Herein we have developed a sustainable route for the synthesis of imines from the coupling reaction of alcohols with amines under aerial reaction conditions using phosphine-free air stable cobalt catalysts.
Collapse
Affiliation(s)
- Jharna Mahato
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Partha Sarathi Bera
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Tanmoy Kumar Saha
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| |
Collapse
|
10
|
Ansari MF, Maurya AK, Kumar A, Elangovan S. Manganese-catalyzed C-C and C-N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer. Beilstein J Org Chem 2024; 20:1111-1166. [PMID: 38887586 PMCID: PMC11181258 DOI: 10.3762/bjoc.20.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Transition-metal-mediated "borrowing hydrogen" also known as hydrogen auto-transfer reactions allow the sustainable construction of C-C and C-N bonds using alcohols as hydrogen donors. In recent years, manganese complexes have been explored as efficient catalysts in these reactions. This review highlights the significant progress made in manganese-catalyzed C-C and C-N bond-formation reactions via hydrogen auto-transfer, emphasizing the importance of this methodology and manganese catalysts in sustainable synthesis strategies.
Collapse
Affiliation(s)
- Mohd Farhan Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Atul Kumar Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
12
|
Bansal S, Punji B. Nickel-Catalyzed Chemodivergent Coupling of Alcohols: Efficient Routes to Access α,α-Disubstituted Ketones and α-Substituted Chalcones. Chemistry 2024:e202304082. [PMID: 38231839 DOI: 10.1002/chem.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Chemodivergent (de)hydrogenative coupling of primary and secondary alcohols is achieved utilizing an inexpensive nickel catalyst, (6-OH-bpy)NiCl2 . This protocol demonstrates the synthesis of branched carbonyl compounds, α,α-disubstituted ketones, and α-substituted chalcones via borrowing hydrogen strategy and acceptorless dehydrogenative coupling, respectively. A wide range of aryl-based secondary alcohols are coupled with various primary alcohols in this tandem dehydrogenation/hydrogenation reaction. The nickel catalyst, along with KOt Bu or K2 CO3 , governed the selectivity for the formation of branched saturated ketones or chalcones. A preliminary mechanistic investigation confirms the reversible dehydrogenation of alcohols to carbonyls via metal-ligand cooperation (MLC) and the involvement of radical intermediates during the reaction.
Collapse
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
13
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
14
|
P H, M V, Tomasini M, Poater A, Dey R. Transition metal-free synthesis of 2-aryl quinazolines via alcohol dehydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Thenarukandiyil R, Kamte R, Garhwal S, Effnert P, Fridman N, de Ruiter G. α-Methylation of Ketones and Indoles Catalyzed by a Manganese(I) PC NHCP Pincer Complex with Methanol as a C 1 Source. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Rohit Kamte
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Subhash Garhwal
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Philipp Effnert
- Department of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, Münster 48149, Germany
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
16
|
Genç S, Arslan B, Gülcemal D, Gülcemal S, Günnaz S. Nickel-catalyzed alkylation of ketones and nitriles with primary alcohols. Org Biomol Chem 2022; 20:9753-9762. [PMID: 36448637 DOI: 10.1039/d2ob01787c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nickel(II)-salen or nickel(II)-salphen catalyzed α-alkylation of ketones and nitriles with primary alcohols is reported. Various α-alkylated ketones and nitriles were obtained in high yields through a borrowing hydrogen strategy by using 1-3 mol% of nickel catalyst and a catalytic amount of NaOH (5-10 mol%) under aerobic conditions.
Collapse
Affiliation(s)
- Sertaç Genç
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Burcu Arslan
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Derya Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Süleyman Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Salih Günnaz
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
17
|
Yadav V, Jagtap SG, Balaraman E, Mhaske SB. Nickel-Catalyzed Direct Synthesis of N-Substituted Indoles from Amino Alcohols and Alcohols. Org Lett 2022; 24:9054-9059. [DOI: 10.1021/acs.orglett.2c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vinita Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayali G. Jagtap
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Santosh B. Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Gupta S, Maji A, Panja D, Halder M, Kundu S. CuO NPs catalyzed synthesis of quinolines, pyridines, and pyrroles via dehydrogenative coupling strategy. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Heterogeneous Transition-Metal Catalyst for Fine Chemical Synthesis Hydrogen Auto-transfer Reaction. Top Catal 2022. [DOI: 10.1007/s11244-022-01694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Mourão H, Gomes CSB, Realista S, Royo B. Visible Light‐Induced Catalytic Hydrosilylation of Ketones Mediated by Manganese NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henrique Mourão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| | - Clara S. B. Gomes
- LAQV‐REQUIMTE and UCIBIO‐Applied Molecular Biosciences Unit, Department of Chemistry, Campus de Caparica NOVA School of Science and Technology, NOVA University of Lisbon Caparica Portugal
- Associated Laboratory i4HB‐Institute for Health and Bioeconomy School of Science and Technology, NOVA University of Lisbon Caparica Portugal
| | - Sara Realista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
- Centro de Química Estrutural Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8 Lisboa Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| |
Collapse
|