1
|
Yu C, Cheng C, Liu Z, Ni Z, Zhao Z, Lu H, Hao E, Jiao L. A novel boron-stereogenic fluorophore with dual-state circular polarization luminescence via a self-dispersing strategy. Chem Sci 2025; 16:7971-7980. [PMID: 40201163 PMCID: PMC11973722 DOI: 10.1039/d5sc01025j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Molecular engineering is a reliable approach for the development of circularly polarized luminescence (CPL) materials for various applications. However, creating dual-state CPL platforms that possess chirality while achieving a delicate balance between molecular rigidity and flexibility remains a formidable challenge. In this study, a novel bisarylboron-anchored pyrrolylsalicylhydrazone (BOPSH) platform was synthesized via a facile "one-pot" condensation. These key aryl-boron substituents not only provide structural rigidity to the fluorophore, enhancing the bright emission and suppressing emission quenching from π-π stacking in solid states due to their twisting and bulky steric effects, but also generate a boron-stereogenic center and enable strong CPL by promoting intramolecular charge-transfer transitions. As a result, these BOPSHs show intense absorption and strong dual-state emissions in both solution and solid states (with Φ PL value approaching unity), emitting across the visible region with excellent chemical, photostability, and thermal stability. Meanwhile, their enantiomers display dual-state CPL performance, with luminescence dissymmetry factors (g lum) up to 9.40 × 10-3, and CP electroluminescence (EL) with a dissymmetry factor (g EL) of 3.07 × 10-3, along with excellent maximum external quantum efficiencies (η ext,max) of 5.0%, approaching the theoretical limit for fluorescent molecules. We expect our study to break new ground in the construction of chiral dual-state materials with diverse structures.
Collapse
Affiliation(s)
- Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Chao Cheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhangzhan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Zhigang Ni
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 Zhejiang China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 Zhejiang China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
2
|
Maeda C, Michishita S, Yasutomo I, Ema T. B,N-Embedded Helical Nanographenes Showing an Ion-Triggered Chiroptical Switching Function. Angew Chem Int Ed Engl 2025; 64:e202418546. [PMID: 39776135 DOI: 10.1002/anie.202418546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Intramolecular oxidative aromatic coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded π-framework, which leads to the high binding constant (Ka) of 1×105 M-1. The four-coordinate boron species was converted back to the parent three-coordinate boron species with Ag+, and the chiroptical switch between the three-coordinate boron and four-coordinate boron species has been achieved via the ion recognition with the change in the color and glum values.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Sayaka Michishita
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Issa Yasutomo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
3
|
Guo L, Zhang M, Zhao C. [(2-Dimesitylboryl)phenyl]ethynyl-Substituted [2.2]Paracyclophane Exhibiting Circularly Polarized Luminescence in Both Solution and Solid-State. Molecules 2025; 30:390. [PMID: 39860259 PMCID: PMC11767752 DOI: 10.3390/molecules30020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, m-BPhANPh2-Cp, in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating N,N-diphenylamino group are introduced into two different benzene rings of [2.2]paracyclophane. Owing to the electronic effect of these two substituents, this compound can display charge-transfer emission with large Stokes shifts (∆υ = 4.23 - 8.20 × 103 cm-1) and fair quantum yields (ΦF = 0.15 - 0.37) in solutions. In addition, this compound can emit strong blue fluorescence in the solid state with quantum yields that are even much higher than in solution (ΦF up to 0.64 in powder and spin-coated film). Moreover, the enantiomeric forms of m-BPhANPh2-Cp can show strong CPL signals in both dilute solution and solid state with |glum|s up to 9.6 × 10-3 and 5.4 × 10-3, respectively. Thus, it is possible to achieve tunable CPL from blue to yellow in solution with high BCPLs ranging from 56.7 to 26.6 M-1 cm-1 and intense blue CPL combing high ΦF and |glum| in the solid state.
Collapse
Affiliation(s)
- Lianfeng Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Mengyuan Zhang
- College of Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Cuihua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
4
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Yan H, Yin X, Wang D, Han T, Tang BZ. Synergistically Boosting the Circularly Polarized Luminescence of Functionalized Pillar[5]arenes by Polymerization and Aggregation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305149. [PMID: 37867209 PMCID: PMC10724438 DOI: 10.1002/advs.202305149] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Indexed: 10/24/2023]
Abstract
Supramolecular polymers based on chiral macrocycles have attracted increasing attention in the field of circularly polarized luminescence (CPL) owing to their unique properties. However, the construction of macrocyclic supramolecular polymers with highly efficient CPL properties in aggregate states still remains challenging. Herein, w e constructed a class of macrocycle-based coordination polymers by combining the planar chiral properties of pillar[5]arene with the excellent fluorescence properties of aggregation-induced emission luminogens. The formation of polymers enhances both the fluorescence and chiral properties, resulting in chiral supramolecular polymers with remarkable CPL properties. Increasing the aggregation degree of the polymers can further improve their CPL properties, as evidenced by a 21-fold increase in the dissymmetry factor and an over 25-fold increase in the fluorescence quantum yield in the aggregate state compared to the solution state. Such a synergistic effect of polymerization- and aggregation-enhanced CPL can be explained by the restriction of intramolecular motions and aggregation-induced conformation confinement. This work provides a promising method for developing highly efficient CPL supramolecular polymers.
Collapse
Affiliation(s)
- Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xiaojun Yin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and EngineeringShenzhen UniversityShenzhenGuangdong518060China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong KongShenzhen (CUHK‐Shenzhen)Guangdong518172China
| |
Collapse
|
6
|
Kalluvettukuzhy NK, Sudhakar P, Eyyathiyil J, Hara N, Imai Y, Thilagar P. Chiral B-N AIEgens: Intense Blue Circularly Polarized Luminescence and Piezochromism. Org Lett 2023; 25:6067-6071. [PMID: 37540142 DOI: 10.1021/acs.orglett.3c02322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We present a new class of blue circularly polarized luminescent emitters based on tetraarylaminoborane (TAAB) with considerable dissymmetry factor in the solid state. The chiral pendant 1-phenylethylamine in BN-RR and BN-SS imparts chirality to the core chromophore, resulting in circularly polarized luminescence signals (glum = 0.8 × 10-3) with a quantum yield of 33% in the crystalline state. This novel set of compounds also showcases intriguing thermally reversible piezochromism.
Collapse
Affiliation(s)
- Neena K Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Pagidi Sudhakar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Jusaina Eyyathiyil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 560012, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 560012, Japan
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
7
|
Takaishi K, Maeda C, Ema T. Circularly polarized luminescence in molecular recognition systems: Recent achievements. Chirality 2023; 35:92-103. [PMID: 36477924 DOI: 10.1002/chir.23522] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Circularly polarized luminescence (CPL) dyes are recognized to be new generation materials and have been actively developed. Molecular recognition systems provide nice approaches to novel CPL materials, such as stimuli-responsive switches and chemical sensing materials. CPL may be induced simply by mixing chiral or achiral, luminescent or nonluminescent host and guest; there are several combinations. Molecular recognition can potentially save time and effort to construct well-ordered chiral structures with noncovalent attractive interactions as compared with the multi-step synthesis of covalently bonded dyes. It is a challenging subject to engage molecular recognition events with CPL, and it is important and interesting to see how it is achieved. In fact, simple molecular recognition systems can even enable the fine adjustment of CPL performance and detailed conformational/configurational analysis of the excited state. Here we overview the recent achievements of simple host-guest complexes capable of exhibiting CPL, summarizing concisely the host/guest structures, CPL intensities, and characteristics.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Sun Z, Yu C, Zhang N, Li L, Jiao Y, Thiruvengadam P, Wu D, Zhang F. Divergent Synthesis of Double Heterohelicenes as Strong Chiral Double Hydrogen-Bonding Donors. Org Lett 2022; 24:6670-6675. [PMID: 36054286 DOI: 10.1021/acs.orglett.2c02734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a very efficient and expandable divergent approach initiated by a direct electrophilic borylation at phenyl rings to synthesize a series of double heterohelicenes. Their π-extended structures with pristine zigzag nitrogen (N)-boron (B)-nitrogen (N) edges offer them substantial physical properties and strong double hydrogen-bond donating capability. The isolated (P,P) and (M,M) enantiomers exhibit circularly polarized luminescence in response to hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Zuobang Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lingling Li
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Palani Thiruvengadam
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Sakai M, Mori M, Hirai M, Ando N, Yamaguchi S. Planarized Phenyldithienylboranes: Effects of the Bridging Moieties and π‐Extension on the Photophysical Properties and Lewis Acidity. Chemistry 2022; 28:e202200728. [DOI: 10.1002/chem.202200728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Mika Sakai
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masayoshi Mori
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Masato Hirai
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center for Materials Science (RCMS), and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| |
Collapse
|